• Title/Summary/Keyword: design density

Search Result 3,400, Processing Time 0.031 seconds

DRAM Package Substrate Using Via Cutting Structure (비아 절단 구조를 사용한 DRAM 패키지 기판)

  • Kim, Moon-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.7
    • /
    • pp.76-81
    • /
    • 2011
  • A new via cutting structure in 2-layer DRAM package substrate has been fabricated to lower its power distribution network(PDN) impedance. In new structure, part of the via is cut off vertically and its remaining part is designed to connect directly with the bonding pad on the package substrate. These via structure and substrate design not only provide high routing density but also improve the PDN impedance by shortening effectively the path from bonding pad to VSSQ plane. An additional process is not necessary to fabricate the via cutting structure because its structure is completed at the same time during a process of window area formation. Also, burr occurrence is minimized by filling the via-hole inside with a solder resist. 3-dimensional electromagnetic field simulation and S-parameter measurement are carried out in order to validate the effects of via cutting structure and VDDQ/VSSQ placement on the PDN impedance. New DRAM package substrate has a superior PDN impedance with a wide frequency range. This result shows that via cutting structure and power/ground placement are effective in reducing the PDN impedance.

An Efficiency Testing Algorithm for Realistic Faults in Dual-Port Memories (이중 포트 메모리의 실제적인 고장을 고려한 효율적인 테스트 알고리즘)

  • Park, Young-Kyu;Yang, Myung-Hoon;Kim, Yong-Joon;Lee, Dae-Yeal;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.72-85
    • /
    • 2007
  • The development of memory design and process technology enabled the production of high density memory. However, this increased the complexity of the memory making memory testing more complicated, and as a result, it brought about an increase in memory testing costs. Effective memory test algorithm must detect various types of defects within a short testing time, and especially in the case of port memory test algorithm, it must be able to detect single port memory defects, and all the defects in the dual port memory. The March A2PF algorithm proposed in this paper is an effective test algorithm that detects all types of defects relating to the duel port and single port memory through the short 18N test pattern.

Stress-diffusion Full Coupled Multiscale Simulation Method for Battery Electrode Design (배터리 전극 설계를 위한 응력-확산 완전연계 멀티스케일 해석기법)

  • Chang, Seongmin;Moon, Janghyuk;Cho, Kyeongjae;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.409-413
    • /
    • 2013
  • In this paper, we device stress-diffusion full coupling multiscale analysis method for battery electrode simulation. In proposed method, the diffusive and mechanical properties of electrode material depend on Li concentration are estimated using density function theory(DFT) simulation. Then, stress-diffusion full coupling continuum formulation based on finite element method(FEM) is constructed with the diffusive and mechanical properties calculated from DFT simulation. Finally, silicon nanowire anode charge and discharge simulations are performed using the proposed method. Through numerical examples, the stress-diffusion full coupling method shows more resonable results than previous one way continuum analysis.

Characteristics of metal contact for silicon solar cells (실리콘 태양전지의 금속전극 특성)

  • Cho, Eun-Chel;Kim, Dong-Seop;Min, Yo-Sep;Cho, Young-Hyun;Ebong, A.U.;Lee, Soo-Hong
    • Solar Energy
    • /
    • v.17 no.1
    • /
    • pp.59-66
    • /
    • 1997
  • The solar cell electrical output parameters such as the open circuit voltage($V_{oc}$) and short circuit current density($V_{sc}$) are intrinsic characteristics depending on junction depth, doping concentration, metal contacts barriers and cell structure. As a role of thumb for solar cell design, the metal contact barriers for phosphorus doped emitter should have lower work function in order to provide lower series resistance. The fabrication of PESC(passivated emitter solar cell) structure usually involves the use of titanium as a metal contact barrier. Chromium, which work function is similar to titanium but conductance is higher than titanium is being investigated as the new metal contact barrier. Although titanium has lower work function difference than chromium, the electric performances of chromium as contact barrier are higher than titanium. This better performance is attributed to the lower resistivity from chromium. This paper, therefore, compares the attributes of metal barrier contacts using titanium and chromium.

  • PDF

Wetting-Induced Collapse in Rock Fill Materials for Embankment (토공구간 성토체의 Wetting Collapse에 관한 연구)

  • Lee, Sung-Jin;Lee, Il-Wha;Im, Eun-Sang;Shin, Dong-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1287-1296
    • /
    • 2007
  • Recently, the high speed railway comes into the spotlight as the important and convenient traffic infrastructure. In Korea, Kyung-Bu high speed train service began in about 400km section at 2004, and the Ho-Nam high speed railway will be constructed by 2017. The high speed train will run with a design maximum speed of 300-350km/hr. Since the trains are operated at high speed, the differential settlement of subgrade under the rail is able to cause a fatal disaster. Therefore, the differential settlement of the embankment must be controlled with the greatest care. Furthermore, the characteristics and causes of settlements which occurred under construction and post-construction should be investigated. A considerable number of studies have been conducted on the settlement of the natural ground over the past several decades. But little attention has been given to the compression settlement of the embankment. The long-term settlement of compacted fills embankments is greatly influenced by the post-construction wetting. This is called 'hydro collapse' or 'wetting collapse'. In spite of little study for this wetting collapse problem, it has been recognized that the compressibility of compacted sands, gravels and rockfills exhibit low compressibility at low pressures, but there can be significant compression at high pressures due to grain crushing by several researchers(Marachi et al. 1969, Nobari and Duncan 1972, Noorany et al. 1994, Houston et al. 1993, Wu 2004). The characteristics of compression of fill materials depend on a number of factors such as soil/rock type, as-compacted moisture, density, stress level and wetting condition. Because of the complexity of these factors, it is not easy to predict quantitatively the amount of compression without extensive tests. Therefore, in this research I carried out the wetting collapse tests, with focusing in various soil/rock type, stress levels, wetting condition more closely.

  • PDF

Study on the Salt Tolerance of Rice and Other Crops in Reclaimed Soil Areas 3. Response of Rice to Plant Population and Spacing in the Slty Soil Area (3. 간척지에서 수도개체군과 재식밀도에 관하여)

  • 임형빈
    • Journal of Plant Biology
    • /
    • v.12 no.2
    • /
    • pp.28-42
    • /
    • 1969
  • Field studies were conducted with the split plot design of 20 treatment with a combination of 4 levels of 3, 5, 7 and 9 plants per hill and 5 levels of 60, 80, 100, 120 and 140 hills per 3.3$m^2$ on non-, low- and high-salty areas. Rice variety, Kusabue was grown under jthe standard fertilization and cultivating. Investigation was made on the productive structure of plant population, leaf-area index, light intensity curve by stratum of crop population at the panicle differentiation stage. The competition density effect on the photosynthetic capacity was low as the salt concentration became higher. This seemed to suggest the possiblity of an increased yielding capacity by closer planting in the salty areas. The effect of an increased number of hills per unit area was greater than that of an increased unmber of plants per hill due to the total leaf area and space distribution of the actie assimilation parts of rice plants. The number of ppanicle per unit area in the salty areas were increased when the number of hill per 3.3$m^2$ increased over an increased number of plants per hill, and the panicle weight was reduced by close planting in the non-lalty area, while it was not reduced so much in the salty areas. The number of grains per panicle was significantly decreased by close planting in the salty areas as in the non-salty area, and ratio of matured grain was not decreased even by close planting in the salty areas, while it was significantly decreased by close planting in the non-salty area. An increase in the rice yield was possible by close planting and greatly related to leaf area index in the salty areas but not in the non-salty area. Increasing the number of hills per unit area showed greater effect on the increase of the rice yield than an increased number of plants per hill in the salty areas. Relationships between the growth characteristics and the rice population affected by plant spacing mode for maximum production were discussed.

  • PDF

Analytical Evaluation of FFR-aided Heterogeneous Cellular Networks with Optimal Double Threshold

  • Abdullahi, Sani Umar;Liu, Jian;Mohadeskasaei, Seyed Alireza
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3370-3392
    • /
    • 2017
  • Next Generation Beyond 4G/5G systems will rely on the deployment of small cells over conventional macrocells for achieving high spectral efficiency and improved coverage performance, especially for indoor and hotspot environments. In such heterogeneous networks, the expected performance gains can only be derived with the use of efficient interference coordination schemes, such as Fractional Frequency Reuse (FFR), which is very attractive for its simplicity and effectiveness. In this work, femtocells are deployed according to a spatial Poisson Point Process (PPP) over hexagonally shaped, 6-sector macro base stations (MeNBs) in an uncoordinated manner, operating in hybrid mode. A newly introduced intermediary region prevents cross-tier, cross-boundary interference and improves user equipment (UE) performance at the boundary of cell center and cell edge. With tools of stochastic geometry, an analytical framework for the signal-to-interference-plus-noise-ratio (SINR) distribution is developed to evaluate the performance of all UEs in different spatial locations, with consideration to both co-tier and cross-tier interference. Using the SINR distribution framework, average network throughput per tier is derived together with a newly proposed harmonic mean, which ensures fairness in resource allocation amongst all UEs. Finally, the FFR network parameters are optimized for maximizing average network throughput, and the harmonic mean using a fair resource assignment constraint. Numerical results verify the proposed analytical framework, and provide insights into design trade-offs between maximizing throughput and user fairness by appropriately adjusting the spatial partitioning thresholds, the spectrum allocation factor, and the femtocell density.

Analyzing the Relationship between the Spatial Configuration of Urban Streets and Air Quality (도시가로의 형태요소와 대기질과의 관계 연구)

  • Chu, Junghyun;Oh, Kyushik;Jeong, Yeun-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.2
    • /
    • pp.73-82
    • /
    • 2009
  • The traffic volume of Seoul is extremely high in comparison to other major cities in Korea, and the result has been harmful physical and mental exposure to pollution by Seoulites on a regular basis. The street air pollution is more important than the others, because the air pollution generated by street traffic directly impacts the health of nearby pedestrians. This problem requires urgent attention and resolution. Among the factors creating the air pollution originating from the street, is the configuration of streets, which have emerged as the most significant because it is related to air and pollutant dispersion. Therefore, this study was conducted under the assumption that street form affects the air quality. Study sites were classified by street characteristics, and air quality was analyzed in each class. Then the OSPM (Operational Street Pollution Model) was employed to simulate the relationship between street configuration and air quality of streets within the old city center and new city center in Seoul. After that this study analyzed the correlation between air pollution and the spatial configuration of urban streets (ex. street width, building height, building density, etc.) to determine their contributions to air pollution. The outcome of this study is as follows : First, the result that was derived from the correlation analysis between street configuration and air quality hewed that the air pollution of the street is influenced by the average height of building, width of the roads as well as traffic volume. On the roadside, the concentration level of $NO_2$ is mainly affected by the average height of building and the deviation of building height along the street and CO is affected by street width. The outcome of this study can be used as a basis for more sound urban design policies, and the promotion of desirable street environments for pedestrians.

Application of Arbuscular Mycorrhizal Fungi during the Acclimatization of Alpinia purpurata to Induce Tolerance to Meloidogyne arenaria

  • da Silva Campos, Maryluce Albuquerque;da Silva, Fabio Sergio Barbosa;Yano-Melo, Adriana Mayumi;de Melo, Natoniel Franklin;Maia, Leonor Costa
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.329-336
    • /
    • 2017
  • An experiment was conducted to evaluate the tolerance of micropropagated and mycorrhized alpinia plants to the parasite Meloidogyne arenaria. The experimental design was completely randomized with a factorial arrangement of four inoculation treatments with arbuscular mycorrhizal fungi (AMF) (Gigaspora albida, Claroideoglomus etunicatum, Acaulospora longula, and a non-inoculated control) in the presence or absence of M. arenaria with five replicates. The following characteristics were evaluated after 270 days of mycorrhization and 170 days of M. arenaria inoculation: height, number of leaves and tillers, fresh mass of aerial and subterranean parts, dry mass of aerial parts, foliar area, nutritional content, mycorrhizal colonization, AMF sporulation, and the number of galls, egg masses, and eggs. The results indicated a significant interaction between the treatments for AMF spore density, total mycorrhizal colonization, and nutrient content (Zn, Na, and N), while the remaining parameters were influenced by either AMF or nematodes. Plants inoculated with A. longula or C. etunicatum exhibited greater growth than the control. Lower N content was observed in plants inoculated with AMF, while Zn and Na were found in larger quantities in plants inoculated with C. etunicatum. Fewer galls were observed on mycorrhized plants, and egg mass production and the number of eggs were lower in plants inoculated with G. albida. Plants inoculated with A. longula showed a higher percentage of total mycorrhizal colonization in the presence of the nematode. Therefore, the association of micropropagated alpinia plants and A. longula enhanced tolerance to parasitism by M. arenaria.

Characteristics of Asphalt Concrete using Waste Foundry Sand (주물고사 첨가 아스팔트 콘크리트의 특성에 관한 연구)

  • Kim, Kwang-Woo;Ko, Dong-Hyuk;Choi, Dong-Chon;Kim, Sung-Won;Kim, Joong-Yul
    • International Journal of Highway Engineering
    • /
    • v.3 no.4 s.10
    • /
    • pp.105-116
    • /
    • 2001
  • This study was performed to evaluate the characteristics of waste foundry sand (WFS) and the asphalt mixture made of a foundry waste sand. To estimate the applicability of WFS, chemical and physical properties were measured by XRF(X-ray fluorescent), and SEM(Scanning electronic microfilm). To improve the stripping resistance of WFS asphalt mixture, anti-stripping agents (a hydrated lime and a liquid anti-stripping agent) were used. To improve tensile properties and durability of WFS asphalt concrete mixture, LDPE(low-density polyethylene) was used as an asphalt modifier Marshall mix design, indirect tensile strength, tensile strength ratio(TSR) after freezing and thawing, moisture susceptibility and wheel tracking tests were carried out to evaluate performance of WFS asphalt concrete. Comparing with conventional asphalt concrete, WFS asphalt concretes showed similar or the better qualify in mechanical properties, and satisfied all specification limits. Therefore, it Is concluded that waste foundry sand can be recycled as an asphalt pavement material.

  • PDF