• Title/Summary/Keyword: design compressive strength

Search Result 1,220, Processing Time 0.028 seconds

A neural-based predictive model of the compressive strength of waste LCD glass concrete

  • Kao, Chih-Han;Wang, Chien-Chih;Wang, Her-Yung
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.457-465
    • /
    • 2017
  • The Taiwanese liquid crystal display (LCD) industry has traditionally produced a huge amount of waste glass that is placed in landfills. Waste glass recycling can reduce the material costs of concrete and promote sustainable environmental protection activities. Concrete is always utilized as structural material; thus, the concrete compressive strength with a variety of mixtures must be studied using predictive models to achieve more precise results. To create an efficient waste LCD glass concrete (WLGC) design proportion, the related studies utilized a multivariable regression analysis to develop a compressive strength waste LCD glass concrete equation. The mix design proportion for waste LCD glass and the compressive strength relationship is complex and nonlinear. This results in a prediction weakness for the multivariable regression model during the initial growing phase of the compressive strength of waste LCD glass concrete. Thus, the R ratio for the predictive multivariable regression model is 0.96. Neural networks (NN) have a superior ability to handle nonlinear relationships between multiple variables by incorporating supervised learning. This study developed a multivariable prediction model for the determination of waste LCD glass concrete compressive strength by analyzing a series of laboratory test results and utilizing a neural network algorithm that was obtained in a related prior study. The current study also trained the prediction model for the compressive strength of waste LCD glass by calculating the effects of several types of factor combinations, such as the different number of input variables and the relevant filter for input variables. These types of factor combinations have been adjusted to enhance the predictive ability based on the training mechanism of the NN and the characteristics of waste LCD glass concrete. The selection priority of the input variable strategy is that evaluating relevance is better than adding dimensions for the NN prediction of the compressive strength of WLGC. The prediction ability of the model is examined using test results from the same data pool. The R ratio was determined to be approximately 0.996. Using the appropriate input variables from neural networks, the model validation results indicated that the model prediction attains greater accuracy than the multivariable regression model during the initial growing phase of compressive strength. Therefore, the neural-based predictive model for compressive strength promotes the application of waste LCD glass concrete.

Compressive Ultimate Strength Analysis of Plates with Initial Imperfections (초기결함(初期缺陷)을 갖는 평판(平板)의 압축최종강도해석(壓縮最終强度解析))

  • J.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.1
    • /
    • pp.31-37
    • /
    • 1985
  • In ship's structure, deck and bottom plate are main strength member subjected to the inplane load due to longitudinal bending, i.e. tensile and/or compressive load. The deck and bottom plate are subdivided into many plate members by stiffeners and girders longitudinally and transversely. Since the plate members are thin, it is likely to be collapsed under compressive load, and when we consider the local strength of deck and bottom, the plate members play an important role in the longitudinal strength. Therefore the precise analysis of their compressive ultimate strength is required for the optimal design of ship's structures. In this paper, the modified analytical method using the incremental form of principle of virtual displacement is introduced to determine the compressive ultimate load of plate members. The results by the present method is satisfactory, and the present method is more effective and economical than the finite element method.

  • PDF

Prediction of the compressive strength of fly ash geopolymer concrete using gene expression programming

  • Alkroosh, Iyad S.;Sarker, Prabir K.
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.295-302
    • /
    • 2019
  • Evolutionary algorithms based on conventional statistical methods such as regression and classification have been widely used in data mining applications. This work involves application of gene expression programming (GEP) for predicting compressive strength of fly ash geopolymer concrete, which is gaining increasing interest as an environmentally friendly alternative of Portland cement concrete. Based on 56 test results from the existing literature, a model was obtained relating the compressive strength of fly ash geopolymer concrete with the significantly influencing mix design parameters. The predictions of the model in training and validation were evaluated. The coefficient of determination ($R^2$), mean (${\mu}$) and standard deviation (${\sigma}$) were 0.89, 1.0 and 0.12 respectively, for the training set, and 0.89, 0.99 and 0.13 respectively, for the validation set. The error of prediction by the model was also evaluated and found to be very low. This indicates that the predictions of GEP model are in close agreement with the experimental results suggesting this as a promising method for compressive strength prediction of fly ash geopolymer concrete.

Comparative analysis of multiple mathematical models for prediction of consistency and compressive strength of ultra-high performance concrete

  • Alireza Habibi;Meysam Mollazadeh;Aryan Bazrafkan;Naida Ademovic
    • Coupled systems mechanics
    • /
    • v.12 no.6
    • /
    • pp.539-555
    • /
    • 2023
  • Although some prediction models have successfully developed for ultra-high performance concrete (UHPC), they do not provide insights and explicit relations between all constituents and its consistency, and compressive strength. In the present study, based on the experimental results, several mathematical models have been evaluated to predict the consistency and the 28-day compressive strength of UHPC. The models used were Linear, Logarithmic, Inverse, Power, Compound, Quadratic, Cubic, Mixed, Sinusoidal and Cosine equations. The applicability and accuracy of these models were investigated using experimental data, which were collected from literature. The comparisons between the models and the experimental results confirm that the majority of models give acceptable prediction with a high accuracy and trivial error rates, except Linear, Mixed, Sinusoidal and Cosine equations. The assessment of the models using numerical methods revealed that the Quadratic and Inverse equations based models provide the highest predictability of the compressive strength at 28 days and consistency, respectively. Hence, they can be used as a reliable tool in mixture design of the UHPC.

Performance Evaluation of Encased-Concrete Bridge Plate(Deep Corrugated Steel Plate) Member (콘크리트 충전 브릿지 플레이트(대골형 파형강판) 부재의 성능평가)

  • Sim, Jong-Sung;Park, Cheol-Woo;Kim, Tae-Soo;Lee, Hyoung-Ho;Kang, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.297-303
    • /
    • 2010
  • The current encased-concrete deep corrugated steel plate has an arch type plate structure, which is a compressive strength-dominant structure that has a small moment due to its arch shape. Therefore, it increases the strength against compression by adding reinforcements to make concrete-filling spaces for increasing the compressive strength and forming cross sections that contain reinforced concrete. In this study, the safety factor of the new-concept encased-concrete bridge plate member was evaluated by comparing the compressive strength obtained from the compressive tests, flexural tests and the design compressive strength determined by using the Canadian Highway Bridge Design Code (CHBDC, 2003), which is a design standard for the encased-concrete bridge plate structures. The results of the safety factor evaluation using the design compressive strength and the test results showed that the safety factor was well above the appropriate value 2.0, which could be adjudged very conservative. If the safety factor based on this study results is considered and applied to the design, economical construction will be possible due to the reduced cross section and construction cost.

Chloride Ion Diffusion Coefficient and Compressive Strength of the Concrete Produced by Ready Mixed Concrete Company in Busan (부산지역 레미콘사의 콘크리트의 압축강도와 염소이온 확산계수)

  • Park, Dong-Cheon;Bang, Jung-Suk;Kim, Yong-Ro;Lee, Tae-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.11-12
    • /
    • 2017
  • The properties of concrete produced by ready mixed concrete company in Busan were tested. Because the concrete was mixed with blast furnace slag and fly ash, the compressive strength and chloride ion diffusion coefficient were lower than OPC concrete even though the specified concrete strength was same. If the durability about salt attack were satisfied, the concrete of lower specified concrete strength would be adopted to concrete mixing design.

  • PDF

Experimental Study on Secondary Moment of High-Strength RC Slender Columns under Eccentric Loads (편심을 받는 고강도콘크리트 장주의 2차모멘트에 관한 실험적 연구)

  • 박동규;배성용;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.571-576
    • /
    • 1998
  • This paper is a part of a research plan aimed at the verification of basic design rules of high-strength concrete columns. A total of 19 slender column specimens were tested to measure secondary moment and stiffness of eccentrically loaded reinforced concrete tied columns. Main variables included in this test program were concrete compressive strength, steel amount, eccentricity, and slenderness ratio. The concrete compressive strength varied from 356kg/$\textrm{cm}^2$ to 951kg/$\textrm{cm}^2$, the longitudinal steel ratios were between 1.13% and 5.51%, and slenderness ratios were 40 and 61. Calculated moment magnification factors and column stiffness based on design codes are higher than the test results for high axial load under small eccentricity, for higher slenderness ratio, for lower longitudinal steel ratio, and for high-strength concrete. The moment magnification method of the current design codes may provide a very conservative design for high-strength concrete slender column.

  • PDF

Statistical Characteristic of Mechanical Properties of Concrete (콘크리트 역학적 성질의 통계적 특성)

  • Kim, Jee-Sang;Shin, Jeong-Ho;Choi, Yeon-Wang;Moon, Jea-Heum;Kim, Joo-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.657-660
    • /
    • 2008
  • The mechanical properties of concrete such as compressive strength, tensile strength, and modulus of elasticity, are considerably influenced by various factors including locality. The material property prescriptions in national concrete design codes should reflect them. In Korea, they have not been studied systematically yet. A new performance-based design code is being prepared in Korea as a government-supported project and it has a plan to make new material prescriptions adopting domestic research results. As a starting point for the research on material properties, the statistical characteristics of mechanical properties of concrete are studied. In this paper, a probabilistic model of compressive strength, relationship between compressive strength and splitting tensile strength and compressive strength and elastic modulus are proposed based on experimental data.

  • PDF

Effects of Cemesol Admixture on Compressive Strength and Acid-resistanee of Concrete (Cemeso1혼화제가 콘크리트의 압축강도와 내산성에 미치는 영향에 관한 연구)

  • 고재군;황경구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.2
    • /
    • pp.3749-3757
    • /
    • 1975
  • This study was conducted to investigate some effects of Cemesol on acidresistance and compressive strength of concrete. In mix design of concrete, the cemesol was used as an admixture of cement, and it was added to the mix in an amount equal to 0.1%, 0.2%, 0.3%, and 0.4% by weight of cement of the mix. Concrete specimens were made in accordance with the. Korean Standard Specification for concrete and they were tested for acid-resistance and compressive strength at 2 weeks intervals through 8 weeks. The tests were performed in two cases non-curing and curing for 28 days. The results obtained from the tests are summarized as follows. 1. Refering to acid-resistance test, the cemesol was comparatively effective at every cemesol content except 0.3% in case of non-curing and it was found that cemesol content of 0.4% was the optimum. On the other hand, the cemesol was ineffective in case of curing, but it was seen that cemesol content of 0.1% had some effect at 6 to 8 weeks curing only. 2. Refering to compressive strength test, the cemesol was remarkably effective at a content of 0.1% but it was also shown most inefiective at content of 0.3% in case of non-curing. On the other hand the cemesol was comparatively effective at every content of cemesol except a content of 0.2% in case of curing and it was determined that the cemesol content of 0.3% may be an optimum content. 3. Since optimum cemesol content varied according to acid-resistance, compressive strength and cases such as non-curing and curing, as indicated above may be desirable to choose an optimum cemesol content suitable for purposes and ciroumstances of construction works or conditions of location. 4. The corrosive rate was proportional to compressive strength in case of non-curing, but the relation was reversed in case of curing. It was found that corrosive rate for 8 weeks did not influence compressive strength in case of non-curing but compressive strength in case of curing begins to vary under the influence of corrosion. Thus, corrosion may be more serious to compressive strength in case of curing than that in case of non-curing.

  • PDF

Compressive Strength of Horizontal Joints Pocket in Precast Concrete Large Panel System (대형판 PC 구조 시스템의 수평접합부 충전부위 구조성능에 관한 실험연구)

  • Yoo, Seong-Hoon;Cho, Seung-Ho;Park, Hyun-Soo;Euh, Yang-Suk;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.597-602
    • /
    • 1997
  • The compressive strength of horizontal joints in precast concrete large panel structures depends on parameters such as grout and panel strength, detail of joint, joint moment, width of grout column etc. As the panels are only connected at the pocket, it results in the reduction of compressive strength area. The purposes of this study are to develop the suitable grout material the joint pocket and to enable us to evaluate structural capacity. The validity of the design formulas provides us more economic system in construction. Test results of 15 specimens show that the proper construction procedure and grouting material develop the sufficient compressive strength of the wall as monolithic system.

  • PDF