• 제목/요약/키워드: design aerodynamic coefficient

검색결과 141건 처리시간 0.024초

BEMT를 이용한 5 kW급 수평축 풍력발전용 로터 블레이드 형상 최적설계에 관한 연구 (Study on the Optimum Rotor Blade Design of the 5 kW HAWT by BEMT)

  • 김문오;이민우;김창구;김태형;이영호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.444-447
    • /
    • 2009
  • The optimum design and the performance analysis software called POSEIDON for the HAWT (Horizontal Axis Wind Turbine) was developed by use of BEMT. The Prandtl's tip loss theory was adopted to consider the blade tip loss. The aerodynamic characteristics of NACA 63415 airfoils were predicted via X-FOIL and the post stall characteristics were estimated by the Viterna's equations. All the predicted aerodynamic characteristics are fairly well agreed with the Velux wind tunnel test results. The rated power of the testing rotor is 5kW at design conditions. The power, estimated by use of predicted lift and drag coefficient via X-FOIL becomes a little higher than experimental one.

  • PDF

천음속 원심압축기의 공력설계 및 수치해석 (Aerodynamic Design and Numerical Analysis on a Transonic Centrifugal Compressor)

  • 최재호
    • 한국추진공학회지
    • /
    • 제12권4호
    • /
    • pp.56-62
    • /
    • 2008
  • 가스터빈에 적용되는 천음속 원심압축기에 대한 공력설계 및 수치해석을 수행하였다. 평균유선법과 준삼차원 해석을 기반으로 공력설계를 수행하고, 레이놀즈 평균 나비어-스톡스 해석을 통해 압축기 내부 유동장을 해석하였다. 천음속 압축기에서 정압계수, 스월 파라미터 및 블레이드 공력하중 등 주요 공력파라미터들에 대한 분석과 임펠러와 디퓨저 내부 유동장에 대한 고찰이 이루어졌다.

리어가이더 곡률반경에 따른 룸에어콘용 관류홴의 공력성능에 대한 실험적 연구 (Experimental Study on the Aerodynamic Performance of a Cross-Flow Fan for the Various Curvature Radius of a Rear-Guider for a Room Air-Conditioner)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제17권4호
    • /
    • pp.36-44
    • /
    • 2013
  • The aerodynamic performance of a cross-flow fan is strongly influenced by the various design factors of a rear-guider and a stabilizer. The design factors considered in this paper are a rear-guider clearance, a stabilizer clearance, and a stabilizer setup angle, respectively. Also, these factors are given to the various diameter ratio between a basic circle and a impeller. The static pressure and the flowrate of a cross-flow fan were measured with a fan-tester. It could be found that the useful design factors with a good aerodynamic performance exist in the certain assembly conditions of an indoor RAC. Therefore, it could be known that a new published patent determining the easy design of an indoor RAC can be applied in a variety of goods.

Influence of the non-linearity of the aerodynamic coefficients on the skewness of the buffeting drag force

  • Denoel, Vincent;Degee, Herve
    • Wind and Structures
    • /
    • 제9권6호
    • /
    • pp.457-471
    • /
    • 2006
  • This paper is devoted to the non linear quasi-steady aerodynamic loading. A linear approximation is often used to compute the response of structures to buffeting forces. Some researchers have however shown that it is possible to account for the non linearity of this loading. This non linearity can come (i) from the squared velocity or (ii) from the shape of the aerodynamic coefficients (as functions of the wind angle of attack). In this paper, it is shown that this second origin can have significant implications on the design of the structure, particularly when the non linearity of the aerodynamic coefficient is important or when the transverse turbulence is important.

Experimental and numerical aerodynamic investigation of a prototype vehicle

  • Akansu, Selahaddin Orhan;Akansu, Yahya Erkan;Dagdevir, Toygun;Daldaban, Ferhat;Yavas, Feridun
    • Wind and Structures
    • /
    • 제20권6호
    • /
    • pp.811-827
    • /
    • 2015
  • This study presents experimental and numerical aerodynamic investigation of a prototype vehicle. Aerodynamics forces examined which exerted on a prototype. This experimental study was implemented in a wind tunnel for the Reynolds number between $10^5-3.1{\times}10^5$. Numerical aerodynamic analysis of the vehicle is conducted for different Reynolds number by using FLUENT CFD software, with the k-$\varepsilon$ realizable turbulence model. The studied model aims at verifying the aerodynamic forces between experimental and numerical results. After the Reynolds number of $2.8{\times}10^5$, the drag coefficient obtained experimentally becomes independent of Reynolds number and has a value of 0.25.

Flapping운동의 최적공력성능을 위한 익형 연구 (A Study of an Airfoil for Optimal Aerodynamic Performance of Flapping Motion)

  • 이정상;김종암;노오현
    • 한국전산유체공학회지
    • /
    • 제8권2호
    • /
    • pp.24-32
    • /
    • 2003
  • In this work, we propose a new idea of flapping airfoil design for optimal aerodynamic performance from detailed computational investigations of flow physics. Generally, flapping motion which is combined with pitching and plunging motion of airfoil, leads to complex flow features such as leading edge separation and vortex street. As it is well known, the mechanism of thrust generation of flapping airfoil is based on inverse Karman-vortex street. This vortex street induces jet-like flow field at the rear region of trailing edge and then generates thrust. The leading edge separation vortex can also play an important role with its aerodynamic performances. The flapping airfoil introduces an alternative propulsive way instead of the current inefficient propulsive system such as a propeller in the low Reynolds number flow. Thrust coefficient and propulsive efficiency are the two major parameters in the design of flapping airfoil as propulsive system. Through numerous computations, we found the specific physical flow phenomenon which governed the aerodynamic characteristics in flapping airfoil. Based on this physical insight, we could come up with a new kind of airfoil of tadpole-shaped and more enhanced aerodynamic performance.

Aerodynamics Simulation of Three Hypersonic Forebody/Inlet Models

  • Xiao, Hong;Liu, Zhenxia;Lian, Xiaochun
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.456-459
    • /
    • 2008
  • The purpose of this paper is to examine the aerodynamic characteristics of three hypersonic configurations including pure liftbody configuration, pure waverider configuration and liftbody integrated with waverider configuration. Hypersonic forbodies were designed based on these configurations. For the purpose to integrate with ramjet or scramjet, all the forebodies were designed integrated with hypersonic inlet. To better understand the forebody performance, three dimensional flow field calculation of these hypersonic forebodies integrated with hypersonic inlet were conducted in the design and off design conditions. The computational results show that waverider offer an aerodynamic performance advantage in the terms of higher lift-drag ratios over the other two configurations. Liftbody offer good aerodynamic performance in subsonic region. The aerodynamic performance of the liftbody integrated with waverider configuration is not comparable to that of pure waverider in the terms of lift-drag ratios and is not comparable to that of pure liftbody in subsonic. But the liftbody integrated with waverider configuration exhibit good lateral-directional and longitudinal-directional stability characteristics. Both pure waverider and liftbody integrated with waverider configuration can provide relatively uniform flow for the inlet and offer good aerodynamic characteristics in the terms of recovery coefficient of total pressure and uniformity coefficient.

  • PDF

Reliability and code level

  • Kasperski, Michael;Geurts, Chris
    • Wind and Structures
    • /
    • 제8권4호
    • /
    • pp.295-307
    • /
    • 2005
  • The paper describes the work of the IAWE Working Group WBG - Reliability and Code Level, one of the International Codification Working Groups set up at ICWE10 in Copenhagen. The following topics are covered: sources of uncertainties in the design wind load, appropriate design target values for the exceedance probability of the design wind load for different structural classes with different consequences of a failure, yearly exceedance probability of the design wind speed and specification of the design aerodynamic coefficient for different design purposes. The recommendations from the working group are summarized at the end of the paper.

소형풍력발전기용 블레이드 공력설계 프로그램 개발 (Development of an aerodynamic design program for a small wind turbine blade)

  • 윤진용;백인수;유능수
    • 한국태양에너지학회 논문집
    • /
    • 제33권1호
    • /
    • pp.40-47
    • /
    • 2013
  • An aerodynamic design tool was developed for small wind turbine blades based on the blade element momentum theory. The lift and drag coefficients of blades that are needed for aerodynamic blade design were obtained in real time from the Xfoil program developed at University of Illinois. While running, the developed tool automatically accesses the Xfoil program, runs it with proper aerodynamic and airfoil properties, and finally obtains lift and drag coefficients. The obtained aerodynamic coefficients are then used to find out optimal twist angles and chord lengths of the airfoils. The developed tool was used to design a wind turbine blade using low Reynolds number airfoils, SG6040 and SG6043 to have its maximum power coefficient at a specified tip speed ratio. The performance of the blade was verified by a commercial code well known for its prediction accuracies.

최소항력을 갖는 비행선의 구조 및 공력 설계 (Aerodynamic and Structural design of Low drag Airship)

  • 윤성찬;이재홍;허현우;유새롬;김두만
    • 항공우주시스템공학회지
    • /
    • 제3권3호
    • /
    • pp.24-31
    • /
    • 2009
  • The Airship which uses light gases(Helium) can afford to be managed safely, and economically. In this paper, it executed Airship aerodynamic design using Theory of the Airship shape. With the change of main design factor, aerodynamic coefficients were investigated by FLUENT and the shape of the Airship which has low drag was chosen. For low drag coefficient of the Airship, the theory of traditional Airship shape was used. The structural analysis of the Airship is executed by ANSYS.

  • PDF