• Title/Summary/Keyword: desferrioxamine

Search Result 18, Processing Time 0.019 seconds

The IGFBP-1 mRNA Expression in HepG2 Cells is Affected by Inhibition of Heme Biosynthesis

  • Park, Jong-Hwan;Park, Tae-Kyu;Kim, Hae-Yeong;Yang, Young-Mok
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.385-389
    • /
    • 2001
  • Insulin-like growth factor binding protein-1 (IGFBP-1) appears to be an important modular of the insulin growth factor (IGF) bioactivity in metabolic disease and chronic hypoxia. Treatment of desferrioxamine (Dfo), cobalt, or nickel in HepG2 cells stimulated the expression of IGFBP1 mRNA as hypoxia. However, the presence of ferric ammonium citrate (FAC) in the 1% $O_2$ decreased the upregulation of the IGFBP-1 mRNA expression. In addition, actinomycin D and cycloheximide abolished the increase in the expression of IGFBP-1 mRNA that was induced by Dfo and transition metals (cobalt and nickel). To obtain further information about the putative oxygen sensor, we postulate that putative heme proteins, responsible for the oxygen-sensing process in HepG2 cells, should be sensitive to hypoada. The mechanism of these upregulations of the IGFBP-1 mRNA expression by Dfo and transition metals was investigated by treatment with 2 mM of 4,6-dioxoheptanoic acid (DHA), an inhibitor of heme biosynthesis. The results showed that 1% $O_2$-, Dfo-, cobalt-, or nickel induced IGFBP-1 mRNA expressions in HepG2 cells were all markedly inhibited when the heme synthesis was blocked by DHA. We suggest that the IGFBP-1 mRNA expression in the HepG2 cell is regulated by 1% $O_2$, Dfo, cobalt, or nickel, implicating the involvement of the putative heme-containing oxygensensing molecule.

  • PDF

Preparation and characterization of Ga-68-deferoxamine to test the feasibility as a bifunctional chelating agent or a renal imaging radiopharmaceutical

  • Kim, Young Ju;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • Chelating agents 1,4,7-triazacyclononanetriacetic acid (NOTA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and 30-amino-3,14,25-trihydroxy-3,9,14,20,25-penta-azatriacontane-2,10,13,21,24-pentaone (desferrioxamine, DFO) were labeled with $^{68}Ga$ and tested in vitro properties to check the feasibility of using DFO as a bifunctional chelating agent or renal imaging agent. The chelating agents of concentration $2{\mu}M$ were labeled with $^{68}Ga$ in 0.1 M HCl at pH 1.7-10.3 at room temperature and $80^{\circ}C$ and the optimal pH for labeling each chelating agent was found. And then, the chelating agents were labeled with $^{68}Ga$ in various concentration of chelating agents at optimal pH. The labeled chelating agents were subject to stability test in human serum and to binding studies to human red blood cell (RBC) and plasma protein. The optimal pH's of NOTA, DOTA and DFO for $^{68}Ga$-labeling were 4.4, 3.6 and 5.6, respectively. DFO ($10{\mu}M$) showed high labeling efficiency (>97%) at pH 5.6. All the labeled chelating agents showed high stability in human serum. $^{68}Ga$-DFO showed low RBC binding but significant amount was bound to plasma protein. The results demonstrated that $^{68}Ga$-DFO can be used as a bifunctional chelating agent but not as a renal imaging agent.

Characterization of Dopaminergic Neuronal Cell Death Induced by either N-Methyl-4-Phenylpyridinium of 6-hydroxydopamine (N-메칠-4-페닐피리디니움 및 6-히드록시도파민으로 유도된 도파민계 신경세포 사멸 기작의 규명)

  • O, Yeong-Jun;Choi, Won-Seok
    • YAKHAK HOEJI
    • /
    • v.41 no.1
    • /
    • pp.86-93
    • /
    • 1997
  • Even though both N-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine have been widely used to establish the experimental model for dopaminergic neuronal ce ll death. mechanisms underlying this phenomenon have not been firmly explored. To investigate how these dopaminergic neurotoxins induce neuronal cell death, murine dopaminergic neuronal cell line, MN9D cells were treated with various concentration of either 6-hydroxydopamine or active form of MPTP, N methyl-4-phenylpyridinium (MPP$^+$). Treatment of cells with 5-100 uM 6-hydroxydopamine resulted in apoptotic cell death whereas cell death induced by 5~50 uM MPP$^+$ was not demonstrated typical apoptotic characteristics such as cell shrinkage, apoptotic body and nuclear condensation. Cell death induced by 6-hydroxydopamine was partially blocked in the presence of antioxidants including soluble form of vitamin E or desferrioxamine suggesting that generation of oxidative stress may be associated with 6-hydroxydopamine-induced cell death in MN9D cells. In contrast, MPP$^+$-induced cell death was not blocked by treatment with any of antioxidants tested. As previously demonstrated that MPP$^+$ caused metabolic alterations such as glucose metabolism, removal of glucose from the medium partially inhibited MPP$^+$-induced cell death suggesting excessive cycles of glycolysis may be associated with MPP$^+$-induced cell death. Taken together, these studies demonstrate that two types of dopaminergic neurotoxins recruit distinct neuronal cell death pathways.

  • PDF

Hydroxyl Radical-Mediated Commitment of HL-60 Cells to Differentiation: Modulation of Differentiation Process by Phosphodiesterase Inhibitors

  • Cho, Young-Jin;Ahn, Woong-Shick;Cha, Seok-Ho;Lee, Kweon-Haeng;Kim, Won-Il;Chung, Myung-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.369-376
    • /
    • 1998
  • This report shows that hydroxyl radical, generated by a Fenton reaction involving adenosine $5'-diphosphate/Fe^{2+}$ complex ($5-15\;{\mu}M$) and $H_2O_2$ ($2\;{\mu}M$), induced differentiation of HL-60 cells in a dose- and time-dependent manner. This is evidenced by the increases in 12-O-tetradecanoylphorbol 13-acetate- and fMLP-stimulated superoxide production capability. The cells exposed to hydroxyl radical for defined periods (24∼96 hr) continued to differentiate even after the hydroxyl radical generating system had been removed. The differentiated cells displayed fMLP-stimulated calcium mobilization and increased expression of myeloid-specific antigen CD11b and CD14. The extent of the differentiation was markedly reduced by desferrioxamine ($100\;{\mu}M$), dimethylthiourea (5 mM), N,N'-diphenyl-1,4-phenylenediamine ($2\;{\mu}M$), and N-acetyl-L-cysteine (5 mM). The induction of differentiation by hydroxyl radical was enhanced by 3-isobutyl-1-methylxanthine ($200\;{\mu}M$) and Ro-20-1724 ($8\;{\mu}M$), and inhibited by dipyridamole (2 ${\mu}M$). These results suggest that hydroxyl radicals may induce commitment of HL-60 cells to differentiate into more mature cells of myelomonocytic lineage through specific signal-transduction pathway that is modulated by phosphodiesterase inhibitors.

  • PDF

A Study for Improvement of Erythropoietin Responsiveness in Hemodialysis Patients (혈액 투석 환자에서 조혈 호르몬 치료 효과 향상에 대한 연구)

  • Park, Jong-Won;Do, Jun-Yeung;Yoon, Kyung-Woo
    • Journal of Yeungnam Medical Science
    • /
    • v.18 no.2
    • /
    • pp.226-238
    • /
    • 2001
  • Background: Anemia in chronic renal failure plays an important role in increasing morbidity of dialysis patients. The causes of the anemia are multifactorial. With using of erythropoietin(EPO) most of uremia-induced anemia can be overcome. However, about 10% of renal failure patients shows EPO-resistant anemia. Hyporesponsiveness to EPO has been related to many factors: iron deficiency, aluminum intoxication, inflammations, malignancies and secondary hyperparathyroidism. So I evaluated the improvement of EPO responsiveness after correction of above several factors. Materials and Methods: Seventy-two patients on hemodialysis over 6 months were treated with intravenous ascorbic acid(IVAA, 300 mg t.i.w. for 12 weeks), After administration of IVAA for 12 weeks, patients were classified into several groups according to iron status, serum aluminum levels and i-PTH levels. Indivisualized treatments were performed: increased iron supplement for absolute iron deficiency, active vitamin D3 for secondary hyperparathyroidism and desferrioxamine(DFO, 5 mg/kg t.i.w.) for aluminum intoxication or hyperferritinemia. Results: 1) Result of IVAA therapy for 12 weeks on all patients(n=72). Hemoglobin levels at 2, 4, 6 week were significantly elevated compared to baseline, but those of hemoglobin at 8, 10, 12 week were not significantly different. 2) Result of IVAA therapy for 20 weeks on patients with 100 ${\mu}g/l$ ${\leq}$ ferritin < 500 ${\mu}g/l$ and transferrin saturation(Tsat) below 30%(n=30). After treatment of IV AA for 12 weeks, patients were evaluated the response of therapy according to iron status. Patients with 100 ${\mu}g/l$ ${\leq}$ ferritin < 500 ${\mu}g/l$ and Tsat below 30% showed the most effective response. These patients were treated further for 8 weeks. Hemoglobin levels at 2, 4 week were significantly increased compared to baseline with significantly reduced doses of EPO at 2, 4, 6, 10, 12, 16, 20 week. Concomitantly significantly improvement of Tsat at 2, 6, 16, 20 week compared to baseline were identified. 3) Result of IVAA therapy for 12 weeks followed by DFO therapy for 8 weeks on patients with serum aluminum above 4 ${\mu}g/l$(n=12) Hemoglobin levels were not significantly increased during IVAA therapy for 12 weeks but dosages of EPO were significantly decreased at 2, 4, 6, 8 week during DFO therapy compared to pre-treatment status. Conclusion: IVAA can be helpful for the treatment of the anemia caused by functional iron deficiency and can reduce the dosage of EPO for anemia correction. And administration of low dose DFO, in cases of increased serum aluminum level, can reduce the requirement of EPO.

  • PDF

Role of Oxygen Free Radical in the Expression of Interleukin-8 and Interleukin-$1{\beta}$ Gene in Mononuclear Phagocytic Cells (내독소에 의한 말초혈액 단핵구의 IL-8 및 IL-$1{\beta}$ 유전자 발현에서 산소기 역할에 관한 연구)

  • Kang, Min-Jong;Kim, Jae-Yeol;Park, Jae-Seok;Lee, Seung-Joon;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.6
    • /
    • pp.862-870
    • /
    • 1995
  • Background: Oxygen free radicals have generally been considered as cytotoxic agents. On the other hand, recent results suggest that small nontoxic amounts of these radicals may act a role in intracellular signal transduction pathway and many efforts to reveal the role of these radicals as secondary messengers have been made. It is evident that the oxygen radicals are released by various cell types in response to extracellular stimuli including LPS, TNF, IL-1 and phorbol esters, all of which translocate the transcription factor $NF{\kappa}B$ from cytoplasm to nucleus by releasing an inhibitory protein subunit, $I{\kappa}B$. Activation of $NF{\kappa}B$ is mimicked by exposure to mild oxidant stress, and inhibited by agents that remove oxygen radicals. It means the cytoplasmic form of the inducible tanscription factor $NF{\kappa}B$ might provide a physiologically important target for oxygen radicals. At the same time, it is well known that LPS induces the release of oxygen radicals in neutrophil with the activation of $NF{\kappa}B$. From above facts, we can assume the expression of IL-8 and IL-$1{\beta}$ gene by LPS stimulation may occur through the activation of $NF{\kappa}B$, which is mediated through the release of $I{\kappa}B$ by increasing amounts of oxygen radicals. But definitive evidence is lacking about the role of oxygen free radicals in the expression of IL-8 and IL-$1{\beta}$ gene in mononuclear phagocytic cells. We conducted a study to determine whether oxygen radicals act a role in the expression of IL-8 and IL-$1{\beta}$ gene in mononuclear phagocytic cells. Method: Human peripheral blood monocytes were isolated from healthy volunteers. Time and dose relationship of $H_2O_2$-induced IL-8 and IL-$1{\beta}$ mRNA expression was observed by Northern blot analysis. To evaluate the role of oxygen radicals in the expression of IL-8 and IL-$1{\beta}$ mRNA by LPS stimulation, pretreatment of various antioxiants including PDTC, TMTU, NAC, ME, Desferrioxamine were done and Northern blot analysis for IL-8 and IL-$1{\beta}$ mRNA was performed. Results: In PBMC, dose and time dependent expression of IL-8 and IL-$1{\beta}$ mRNA by exogenous $H_2O_2$ was not observed. But various antioxidants suppressed the expression of LPS-induced IL-8 and IL-$1{\beta}$ mRNA expression of PBMC and the suppressive activity was most prominant when the pretreatment was done with TMTU. Conclusion: Oxygen free radical may have some role in the expression of IL-8 and IL-$1{\beta}$ mRNA of PBMC but that radical might not be $H_2O_2$.

  • PDF

Comparative Studies of Protein Modification Mediated by Fenton-like Reactions of Iron, Hematin, and Hemoglobin: Generation of Different Reactive Oxidizing Species

  • Kim, Young-Myeong;Kim, Sung-Soo;Kang, Gu;Yoo, Yeong-Min;Kim, Ki-Mo;Lee, Mi-Eun;Han, Jeong-A;Hong, Sun-Joo
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.161-169
    • /
    • 1998
  • TThe reactive oxygen species oxidatively modify the biological macromolecules, including proteins, lipids, and nucleic acids. Iron- and heme-mediated Fenton-like reactions produce different pro-oxidants. However, these reactive products have not been clearly characterized. We examined the nature of the oxidizing species from the different iron sources by measuring oxidative protein modification and spectroscopic study. Hemoglobin (Hb) and methemoglobin (metHb) were oxidatively modified in $O{\array-\\\dot{2}}$ and $H_{2}O_{2}$ generating systems. Globin and bovine serum albumin (BSA) were also modified by iron, iron-EDTA, hematin, and Hb in an $O{\array-\\\dot{2}}$ generating system. In a $H_{2}O_{2}$ generating system, the iron- and iron-EDTA-mediated protein modifications were markedly reduced while the Hb-and hematin-mediated modifications were slightly increased. In the $O{\array-\\\dot{2}}$ generating system, the iron- and iron-EDTA-mediated protein modifications were strongly inhibited by superoxide dismutase (SOD) or catalase, but heme- and Hb-mediated protein modifications were inhibited only by catalase and slightly increased by SOD. Mannitol, 5,5-dimethyl-l-pyrroline-N-oxide (DMPO), deoxyribose, and thiourea inhibited the iron-EDTA-mediated protein modification. Mannitol and DMPO, however, did not exhibit significant inhibition in the hematin-mediated modification. Desferrioxamine (DFO) inhibited protein modification mediated by iron, but cyanide and azide did not, while the hematin-mediated protein modification was inhibited by cyanide and azide, but not significantly by DFO. The protein-modified products by iron and heme were different. ESR and UV-visible spectroscopy detected the DMPO spin adduct of the hydroxyl radical and ferryl ion generated from iron-EDTA and metHb, respectively. These results led us to conclude that the main oxidizing species are hydroxyl radical in the iron-EDTA type and the ferry I ion in the hematin type, the latter being more effective for protein modification.

  • PDF

Comparison and evaluation of 89Zr-labeled trastuzumab and Thio-trastuzumab : a potential immuno-PET probe for HER2-positive carcinomas

  • Un Chol Shin;Seoku Bae;Suk-man Kim;Min-Woo Lee;Han Sang Jin;Hyun Park;Kyo Chul Lee;Jung Young Kim;Ji Woong Lee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.2
    • /
    • pp.105-111
    • /
    • 2021
  • 89Zr is a positron-emitting radioisotope, which has known as well-suited radioisotope for use in a monoclonal antibody-based imaging agent for immuno-PET. The purpose of this study was to quantitatively evaluate the diagnostic ability of general trastuzumab and thio-trastuzumab as HER2 positive receptors based on Df hexadentate iron chelator. Desferrioxamine-p-SCN (Df-Bz-NCS) and desferroixamine-maleimide (Df-Mal) were purchased from Macrocyclics (Dallas, TX, USA). The trastuzumab was purchased from Roche (Schweiz), and thio-trastuzumab was obtained from professor Hyo-Jeong Hong group (Kangwon National University). The radioisotope 89Zr was produced by domestic purification system and KIRAMS using medical cyclotron (50 MeV, Scantronix). The conjugates of Df-trastuzumab and Df-thio-trastuzumab were prepared with Df-Bz-NCS and Df-Mal under basic aqueous solution (pH 8-9) at room temperature, respectively. The conjugates purified by PD-10 column were mixed with dried 89Zr chloride. 89Zr-labeled conjugates were purified and concentrated by Amicon ultra centrifugal filter. The preparation step and time of 89Zr-labeled conjugates was shorted as 4 steps within 2 hours. 89Zr-labeled conjugates showed the highly radiochemical purity of over 98%, and were very stable until 7 days by the analysis of radio-ITLC method. Each radio-labeled conjugates were also exhibited the highly stability in both PBS buffer and mouse serum. Immuno-PET imaging of 89Zr-labeled conjugates in mice bearing gastric cancer xenograft tumors with HER2 expression showed high tumor uptake in the NCI-N87 HER2-expressing. However, 89Zr-Df-Mal-thio-trastuzumab showed a relatively lower tumor-to-background ratio than 89Zr-Df-Bz-trastuzumab, as well as whole-body distribution. In the results, 89Zr-Df-Bz-trastuzumab was evaluated to have a relatively higher HER2 diagnostic ability than 89Zr-Df-Mal-thio-trastuzumab.