• 제목/요약/키워드: desaturase-1

검색결과 120건 처리시간 0.022초

Alpha-Linolenic Acid: It Contribute Regulation of Fertilization Capacity and Subsequent Development by Promoting of Cumulus Expansion during Maturation

  • Lee, Ji-Eun;Hwangbo, Yong;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • 한국발생생물학회지:발생과생식
    • /
    • 제22권4호
    • /
    • pp.297-307
    • /
    • 2018
  • The objective of this study was to evaluate the effects of alpha-linolenic acid (ALA) during in vitro maturation (IVM) on cumulus expansion, nuclear maturation, fertilization capacity and subsequent development in porcine oocytes. The oocytes were incubated with 0, 25, 50, and $100{\mu}M$ ALA. Cumulus expansion was measured at 22 h, and gene expresison and nuclear maturation were analyzed at 44 h after maturation. Then, mature oocytes with ALA were inseminated, and fertilization parameters and embryo development were evaluated. In results, both of cumulus expansion and nuclear maturation were increased in $50{\mu}M$ ALA groups compared to control groups (p<0.05). However, expression of gap junction protein alpha 1 (GJA1, cumulus expansion-related gene), delta-6 desaturase (FADS1, fatty acid metabolism-related gene), and delta-5 desaturase (FADS2) mRNA in cumulus cells were reduced by $50{\mu}M$ ALA treatment (p<0.05). Cleavage rate was enhanced in 25 and $50{\mu}M$ ALA groups (p<0.05), especially, treatment of $50{\mu}M$ ALA promoted early embryo develop to 4 and 8 cell stages (p<0.05). However, blastocyst formation and number of cells in blastocyst were not differ in 25 and $50{\mu}M$ ALA groups. Our findings show that ALA treatment during maturation could improve nuclear maturation, fertilization, and early embryo development through enhancing of cumulus expansion, however, fatty acid metabolism- and cumulus expansion-related genes were down-regulated. Therefore, addition of ALA during IVM of oocytes could improve fertilization and developmental competence, and further studies regarding with the mechanism of ALA metabolism are needed.

Association of -867G>C, -877Gdel, and Exon 5G>T Polymorphisms in the Stearoyl-CoA Desaturase (SCD) Gene with Fatty Acid Composition in the M. longissimus dorsi Muscle of Hanwoo (Korean Cattle)

  • Cho, Yong-Min;Lee, Seung-Hwan;Park, Eung-Woo;Kim, Nam-Kuk;Lim, Da-Jeong;Kim, Kyoung-Hoon;Park, Beom-Young;Lee, Chang-Soo;Oh, Sung-Jong;Kim, Tae-Hun;Yoon, Du-Hak
    • 한국축산식품학회지
    • /
    • 제30권4호
    • /
    • pp.655-660
    • /
    • 2010
  • This study aimed to identify genetic polymorphisms associated with fatty acid composition in Hanwoo beef. In this study, three SNPs (-867G>C, -877Gdel and 878T>C) were detected in SCD gene by DNA sequencing and PCR-RFLP. Statistical analysis revealed that 878T>C SNP was significantly associated with total saturated (p=0.016), unsaturated (p=0.016), and monounsaturated fatty acid (p=0.026) composition. However, the other two SNPs (-867G>C and -877Gdel) that are detected in the regulatory region of the SCD gene have no association with the fatty acid composition of Hanwoo meat. The 878C (alanine type) allele was found to be associated with 2.2% higher monounsaturated fatty acid, 1.5% lower saturated fatty acid, and 1.4% higher unsaturated fatty acid content than those associated with the 878T (valine type) allele. These results indicate that the non-synonymous SNP (878T>C) in the SCD gene could be a causal mutation that contributes to the MUFA variation in Hanwoo beef.

Carcass and Meat Characteristics and Gene Expression in Intramuscular Adipose Tissue of Korean Native Cattle Fed Finishing Diets Supplemented with 5% Palm Oil

  • Park, Sungkwon;Yan, Zhang;Choi, Changweon;Kim, Kyounghoon;Lee, Hyunjeong;Oh, Youngkyoon;Jeong, Jinyoung;Lee, Jonggil;Smith, Stephen B.;Choi, Seongho
    • 한국축산식품학회지
    • /
    • 제37권2호
    • /
    • pp.168-174
    • /
    • 2017
  • We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression but depress stearoyl-CoA desaturase (SCD) gene expression in intramuscular (i.m.) adipose tissues of Hanwoo steers during fattening period (from 16 to 32 mon of age). Fourteen Hanwoo steers were allotted randomly to 2 groups of 7 steers based on initial BW and fed either a basal diet (control) or the basal diet supplemented with 5% palm oil (BDSP). At slaughter, i.m. adipose tissue was harvested for analysis of adipogenic gene expression and fatty acid composition. There were no differences in BW or average daily gain between treatment groups. Supplemental palm oil had no effect on carcass quality traits (carcass weight, backfat thickness, loin muscle area, or marbling scores) or meat color values. Palm oil increased (p<0.05) expression of AMP-activated protein kinase-${\alpha}$ and peroxisome proliferator-activated receptor-${\gamma}$, but decreased (p<0.05) CAAT/enhancer binding protein-${\beta}$ gene expression and tended to decrease stearoyl-CoA desaturase gene expression in i.m. adipose tissue. Palm oil increased total i.m. polyunsaturated fatty acids (p<0.05) compared to the control i.m. adipose tissue, but had no effect on saturated or monounsaturated fatty acids. Although there were significant effects of supplemental palm oil on i.m. adipose tissue gene expression, the absence of negative effects on carcass and meat characteristics indicates that palm oil could be a suitable dietary supplement for the production of Hanwoo beef cattle.

Transcript accumulation of carotenoid biosynthesis genes in the cyanobacterium Synechocystis sp. PCC 6803 during the dark-to-light transition is mediated by photosynthetic electron transport

  • Ryu, Jee-Youn;Song, Ji-Young;Chung, Young-Ho;Park, Young-Mok;Chow, Wah-Soon;Park, Youn-Il
    • Plant Biotechnology Reports
    • /
    • 제4권2호
    • /
    • pp.149-155
    • /
    • 2010
  • Expression of the genes for carotenoid bio-synthesis (crt) is dependent on light, but little is known about the underlying mechanism of light sensing and signalling in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter, Synechocystis). In the present study, we investigated the light-induced increase in the transcript levels of Synechocystis crt genes, including phytoene synthase (crtB), phytoene desaturase (crtP), ${\zeta}$-carotene desaturase (crtQ), and ${\beta}$-carotene hydroxylase (crtR), during a darkto-light transition period. During the dark-to-light shift, the increase in the crt transcript levels was not affected by mutations in cyanobacterial photoreceptors, such as phytochromes (cph1, cph2 and cph3) and a cryptochrome-type photoreceptor (ccry), or respiratory electron transport components NDH and Cyd/CtaI. However, treatment with photosynthetic electron transport inhibitors significantly diminished the accumulation of crt gene transcripts. Therefore, the light induction of the Synechocystis crt gene expression is most likely mediated by photosynthetic electron transport rather than by cyanobacterial photoreceptors during the dark-to-light transition.

생리활성지방산;그 대사와 기능 (Physiologically Active Fatty Acids their Metabolism and Function)

  • 녹산광
    • 한국응용과학기술학회지
    • /
    • 제13권3호
    • /
    • pp.15-24
    • /
    • 1996
  • Essentiality was proposed in the field of lipid by Burr and Burr in 1929. When rats were raised on the fat-free diet, their growth retarded and their skin and tails showed the characteristic deficient symptoms, which were relieved by the addition of ${\omega}6(n-6)$ polyunsaturated fatty acids as linoleic(LA) and arachidonic(AA) acids to the basal diet. LA is dehydrogenated to ${\gamma}-linolenic$ acid(GLNA) by ${\Delta}6$ desaturase, then GLNA is 2 carbon chain elongated by elongase to $dihomo-{\gamma}-linolenic$ acid(DGLNA), which is desaturated by ${\Delta}5$ desaturase to AA. These acids are called LA family or ${\omega}6(n-6)$ polyunsaturated fatty acids(PUFA). ${\alpha}-Linolenic$ acid(ALNA) is converted through the series of desaturation and elongation steps to docosahexaenic acid(DHA) via eicosapentaenoic acid(EPA). These acids belong to ALNA family or ${\omega}3(n-3)$PUFA. Human who consume large amounts of EPA and DHA, which are present in fatty fish and fish oils, have increased levels of these two fatty acids in their plasma and tissue lipids at the expense of LA and AA. Alternately, vegetarians, whose intake of LA in high, have more elevated levels of LA and AA and lower levels of EPA and DHA in plasma lipids and in cell membranes than omnivores. AA and EPA are metabolized to substances called eicosanoids. Those derived form AA are known as prostanocids(prostaglandins and prostacyclins) of the 2-types and leukotrienes of the 4-series, whereas those derived from EPA are known as prostanoids of the 3-types and leukotrienes of the 5-series. DGLNA is a precursor of the 1-types of prostaglandins. The metabolites of AA and EPA have competitive functions. Ingestion of EPA from fish or fish oil replaces AA from membrane phospholipids in practically all cells. So this leads to a more physiological state characterized by the production of proatanoids and leukotrienes that have antithrombic, antichemotactic, antivasoconstrictive and antiinflammatory properties. It is evident that ${\omega}3$ fatty acids can affect a number of chronic diseases through eicosanoids alone.

감마지방산 : 리뷰 (Gamma fatty acid : A review)

  • 박병성
    • 한국응용과학기술학회지
    • /
    • 제25권4호
    • /
    • pp.446-458
    • /
    • 2008
  • Essential fatty acids (EFA) are fatty acids that must be obtained from the diet because they can not be biosynthesized by human or animals. Gamma fatty acids contain gamma-linolenic acid (GLA, 18:3n-6) and dihomo-gamma-linolenic acid (DHGLA, 20:3n-6) as intermediate metabolites of linoleic acid (LA, 18:2n-6), which is an EFA found in vegetable oils. GLA is an important essential fatty acid that is required by human and animals to function normally. Recently, studies have indicated that GLA may be an essential component of the cell membrane, as well as an active component of dietary supplements and medicine. GLA must beadministered through the diet because it is converted into DHGLA in the body quickly and completely. DHGLA is a key material involved in the metabolism of LA. GLA is biosysthesized by the rate limiting step of ${\Deltac}^6$-desaturase, which is an enzyme that desaturates LA, there by allowing it to be converted into DHGLA via chain elongation. In addition, DHGLA exerts bioactive effects via action as a precursor of eicosanoid series 1. Breast milk contains an abundant amount of GLA; however, GLA is also available directly in evening primrose oil, black currant seed oil, borage oil and hemp seed oil. In addition, GLA enriched animal and plant can be produced using biotechnology, and highly pure GLA can be extracted using supercritical fluids, such as supercritical carbon dioxide, which will allow economically feasible production of GLA for use in medicines.

Genome wide association study of fatty acid composition in Duroc swine

  • Viterbo, Vanessa S.;Lopez, Bryan Irvine M.;Kang, Hyunsung;Kim, Hoonseop;Song, Choul-won;Seo, Kang Seok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권8호
    • /
    • pp.1127-1133
    • /
    • 2018
  • Objective: Genome wide association study was conducted to identify and validate candidate genes associated with fatty acid composition of pork. Methods: A total of 480 purebreed Duroc pigs were genotyped using IlluminaPorcine60k bead chips while the association test was implemented following genome-wide rapid association using Mixed Model and Regression-Genomic Control (GRAMMAR-GC) approach. Results: A total of 25, 29, and 16 single nucleotide polymorphisms (SNPs) were significantly associated with stearic (18:0), oleic (18:1) and saturated fatty acids (SFA), respectively. Genome wide significant variants were located on the same region of swine chromosome 14 (SSC14) that spanned from 120 to 124 Mb. Top SNP ALGA008191 was located at 5 kb near the stearoyl-CoA desaturase (SCD) gene. This gene is directly involved in desaturation of stearic acid into oleic acid. General relationship of significant SNPs showed high linkage disequilibrium thus genome-wide signals was attributed to SCD gene. However, understanding the role of other genes like elongation of very long chain fatty acids-3 (ELOVL3) located on this chromosomal segment might help in further understanding of metabolism and biosynthesis of fatty acids. Conclusion: Overall, this study provides evidence that validates SCD gene as strong candidate gene associated with fatty acid composition in Duroc pigs. Moreover, this study confirms significant SNPs near ELOVL3 gene.

Enhancement of Virus-induced Gene Silencing in Tomato by Low Temperature and Low Humidity

  • Fu, Da-Qi;Zhu, Ben-Zhong;Zhu, Hong-Liang;Zhang, Hong-Xing;Xie, Yuan-Hong;Jiang, Wei-Bo;Zhao, Xiao-Dan;Luo, Yun-Bo
    • Molecules and Cells
    • /
    • 제21권1호
    • /
    • pp.153-160
    • /
    • 2006
  • Virus-induced gene silencing (VIGS) is an attractive reverse-genetics tool for studying gene function in plants. We showed that silencing of a phytoene desaturase (PDS) gene is maintained throughout TRV-PDS-inoculated tomato plants as well as in their flowers and fruit and is enhanced by low temperature ($15^{\circ}C$) and low humidity (30%). RT-PCR analysis of the PDS gene revealed a dramatic reduction in the level of PDS mRNA in leaves, flowers and fruits. Silencing of PDS results in the accumulation of phytoene, the desaturase substrate. In addition, the content of chlorophyll a, chlorophyll b and total chlorophyll in the leaves of PDS-silenced plants was reduced by more than 90%. We also silenced the LeEIN2 gene by infecting seedlings, and this suppressed fruit ripenning. We conclude that this VIGS approach should facilitate large-scale functional analysis of genes involved in the development and ripening of tomato.

Green cabbage supplementation influences the gene expression and fatty acid levels of adipose tissue in Chinese Wanxi White geese

  • Bin Wang;Zhengquan Liu;Xingyong Chen;Cheng Zhang;Zhaoyu Geng
    • Animal Bioscience
    • /
    • 제36권10호
    • /
    • pp.1558-1567
    • /
    • 2023
  • Objective: Dietary green cabbage was evaluated for its impact on fatty acid synthetic ability in different adipose tissues during fattening of Wanxi White geese. Methods: A total of 256 Wanxi White geese at their 70 days were randomly allocated into 4 groups with 4 replicates and fed 0%, 15%, 30%, and 45% fresh green cabbage (relative to dry matter), respectively, in each group. Adipose tissues (subcutaneous and abdominal fat), liver and blood were collected from 4 birds in each replicate at their 70, 80, 90, and 100 days for fatty acid composition, relative gene expression and serum lipid analysis. Two-way or three-way analysis of variance was used for analysis. Results: The contents of palmitic acid (C16:0), palmitoleic acid (C16:1), linoleic acid (C18:2), and alpha-linolenic acid (C18:3) were feeding time dependently increased. The C16:0 and stearic acid (C18:0) were higher in abdominal fat, while C16:1, oleic acid (C18:1), and C18:2 were higher in subcutaneous fat. Geese fed 45% green cabbage exhibited highest level of C18:3. Geese fed green cabbage for 30 d exhibited higher level of C16:0 and C18:0 in abdominal fat, while geese fed 30% to 45% green cabbage exhibited higher C18:3 in subcutaneous fat. The expression of Acsl1 (p = 0.003) and Scd1 (p<0.0001) were decreased with green cabbage addition. Interaction between feeding time and adipose tissue affected elongation of long-chain fatty acids family member 6 (Elovl6), acyl-CoA synthetase longchain family member 1 (Acsl1), and stearoly-coA desaturase 1 (Scd1) gene expression levels (p = 0.013, p = 0.003, p = 0.005). Feeding time only affected serum lipid levels of free fatty acid and chylomicron. Higher contents of C16:0, C18:1, and C18:3 were associated with greater mRNA expression of Scd1 (p<0.0001), while higher level of C18:2 was associated with less mRNA expression of Scd1 (p<0.0001). Conclusion: Considering content of C18:2 and C18:3, 30% addition of green cabbage could be considered for fattening for 30 days in Wanxi White geese.

산달래 추출물의 3T3-L1 지방전구세포 분화 억제 효능 (Inhibitory effect of Allium macrostemon extracts on adipogenesis of 3T3-L1 preadipocytes)

  • 이주연;정예주;김진아;김춘영
    • 한국식품과학회지
    • /
    • 제52권5호
    • /
    • pp.441-449
    • /
    • 2020
  • 산달래 열수추출물의 생리활성을 비교하기 위하여 산달래를 전체(WAE), 비늘줄기(BAE), 잎(LAE)으로 분리하여 추출한 후 항산화 활성, 총 폴리페놀 함량, 지방전구세포 분화 억제 효과를 확인하였다. BAE에 비해 WAE와 LAE는 유의적으로 높은 라디칼 소거능, 환원력과 총 폴리페놀 함량을 보였다. 지방전구세포 분화 억제능 역시 BAE에 비해 WAE와 LAE가 유의적으로 높은 것을 확인할 수 있었다. 이를 통해 산달래 전체 중 가장 많은 부분을 차지하는 잎에 유효성분이 있을 것으로 판단되어, LAE의 항비만 효능을 알아보았다. LAE는 농도의존적으로 지방전구세포의 분화를 감소시켰으며 이는 독성에 의한 3T3-L1 세포 사멸에 의한 것이 아님을 세포생존율 측정을 통해 확인하였다. LAE의 지방전구세포 분화 억제능은 adipogenesis 관련 전사인자인 CCAAT/enhancer-binding protein beta (C/EBPβ), peroxisome proliferator-activated receptor gamma (PPARγ), C/EBPα 유전자 발현의 억제와 관련이 있는 것으로 확인하였다. 또한 lipogenesis에 필수적인 효소 stearoyl-CoA desaturase 1 (SCD1)의 유전자 발현을 저해하였다. 이를 통해 산달래 추출물 중 LAE는 adipogenic 전사인자와 SCD1 유전자 조절을 통해 지방전구세포 분화를 억제함을 밝혔고 항비만 기능성 물질로서의 활용 가능성을 확인하였다. 따라서 산달래가 항비만 효과가 있는 식품임을 입증하고 건강기능성식품 소재로서 상품화될 가능성을 제시하고자 한다.