• Title/Summary/Keyword: desalination system

Search Result 161, Processing Time 0.029 seconds

A Fundamental Study on Sea Water Freezing Behavior in a Rectangular Vessel Cooled from Below (구형용기의 하부면 냉각에 의한 해수 동결거동의 기초적 연구)

  • 김명준;길병래;김명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.564-570
    • /
    • 1997
  • The most important factor for the desalination system is the fresh water production cost dependent upon the possible energy source which should be obtained easily and with low price. Recently in Korea the demand of LNG, as a cheap and clean energy which does not cause an environmental problem, has sharply been increased. In general, LNG is storaged in a tank as a liquid state below -162 'C. When it is serviced, however, the LNG absorbs energy from a heating source and transforms to the gaseous state with high pressure. During this process a huge amount of cold energy accumulated in LNG is wasted. This waste cold energy can be utilized for producing fresh water from sea water using a sea water freezing desalination system. In order to develop a sea water freezing desalination system and to establish its design technique, a qualitative and quantitative data regarding the freezing behavior of sea water is needed in advance. The goal of this study, therefore, are to reveal the freezing mechanism of sea water, to measure the freezing rate, and to investigate the freezing heat-transfer characteristics. The experimental results help to provide a general understanding of the sea water freezing behavior in a Rectangular vessel cooled from below.

  • PDF

Numerical Simulation of Steam Jet Vacuum System in Multi-effect Desalination Plant (다중효용 담수 설비의 증기이젝터 진공장치에 관한 수치해석)

  • Ko, Sang-Cheol;Kim, Yong-Sun;Choi, Du-Youl;Kim, Pil-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.238-242
    • /
    • 2015
  • A steam jet vacuum system that will be implemented in a multi-effect desalination plant is numerically investigated. The objective of this study is to numerically investigate the performance characteristic of the steam jet vacuum system for the sea water distillation process. The effects of design parameter such as nozzle size and converging duct angle are discussed in order to get a better understanding of flow characteristics inside the steam ejector and subsequently pave the way for more optimum designs. The simulation results have been in good agreement with experimental data and have well reproduced the shock train phenomena of the throat region.

Analysis of combined cycle for desalination process and $CO_2$ refrigeration system (담수화 공정과 이산화탄소 냉동 시스템의 복합사이클 해석)

  • 신지영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.41-48
    • /
    • 2000
  • The characteristics of a combined cycle for the production of fresh water and air-conditioning was analyzed. The combined cycle consisted of an open water cycle and a $CO_2$ refrigeration cycle interlinked in the pre-heater of the water cycle, which is the condenser of the refrigeration cycle. The oprating conditions and criteria for the fresh water production and air-conditioning was described and their effects on the total system were evaluated. The results indicated an increase of desalinated water with the increase of hot water temperature, which resulted in the decrease of cooling capacity of the refrigeration system in this study. However, the energy saving correspond to the pre-heating of the water cycle by the condensing of the refrigeration system shows the avilable advantage of the proposed cycle as compared to other single purpose plants for desalination.

  • PDF

A Remote Control System Design For a Desalination Plant (도서지역 해수담수화설비 원격감시제어시스템 구성)

  • Jeong, Han-Sang;Lee, Heung-Ho;Park, Soon-Mo;Chang, Jeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1699-1700
    • /
    • 2008
  • The dissertation is based on the 'remote monitoring control system' for a water desalination plant which changes seawater into safe clean drinkable water. The system is operated and supported by a satellite link which can be easily handled and monitored by any professional. Therefore the system can be operated from any given location. The design allows it to function on islands that have frequent and severe water shortages via the satellite from the main sector. It shows the specific details for the main provision on building the remote monitoring control system for the water desalination.

  • PDF

Prospect and strategies of seawater desalination plant in Asia major countries (아시아 주요국의 해수담수화 플랜트 시장전망과 진출방안)

  • Sohn, Jin-Sik;Han, Ji-Hee;Kim, Suk-Hwa;Sheen, Dong-Woo;Lim, Jae-Han
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.157-164
    • /
    • 2010
  • Seawater desalination has vest interest in terms of ultimate water resources for the countries suffering lack of water supply. Water demand is steadily increasing due to the population growth and industrialization in Asia. The objectives of this study are to prospect the desalination market in Asia countries including China, India and Singapore, and to propose possible strategies of getting through Asia water market. Water supply in China is increasing up to $5,322,060m^3$/d in 2015. Northeast coastal areas such as Tianjin, Shandong, Hubei, and Liaoning are expected rapid increase for water demand. The investment of water supply in India would be 1.74 billion dollars during 2006 to 2015. Chennai, Kutch, and Pondicherry have possibility in introducing seawater desalination plants. Singapore is focusing on water reuse, and operating three NEWater plants (water reuse plants). BOT with total solution providing financing, construction, operation etc. is an adequate strategy to getting through China water market, while desalination plant project connecting with power plant is desirable in India. The cooperative system with Korea and Singapore creates synergy effect regarding planning and operating experience of Singapore and EPC ability of Korea.

Patents Map on the Desalination Technology Using Solar Energy (태양에너지를 이용한 해수담수화 기술관련 특허 분석)

  • Im, Eun-Jung;Kim, Sung-Hyun
    • New & Renewable Energy
    • /
    • v.8 no.1
    • /
    • pp.35-43
    • /
    • 2012
  • Patent analysis is the extracting knowledge which is needed for the company's research and development strategy through accumulated worldwide patent database. In order to set the future direction corresponding technology which is scheduled to be developed, the technology trends and deployment processes are identified by analyzing results of present patent applications. The patent analysis provides the required results for analyzing present patent applications. In this paper, technology classification for related patent analysis methods and system, and patent analysis for desalination technology using solar energy development was carried out as well. The patents in Korea, USA, Japan, China, and Europe were searched. The technology trend desalination technology using solar energy was analyzed based on patent application year, countries, main applications, and each technologies. The application status of desalination patents showed a tendency to increase slightly. It was found that the number of patent for applied desalination was USA patent 21.0%, Japan patent 27.0%, China 24.8%, EU 2.7% and Korea patent 24.5%, respectively.

Development of 3th Effects Evaporative desalination system for Solar Desalination System (태양에너지 해수담수화를 위한 3중 효용 증발식 담수기 개발)

  • Hwang, In-Seon;Joo, Hong-Jin;Yun, Eung-Sang;Kwak, Hee-Youl
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.201-201
    • /
    • 2010
  • The evaporative desalination system with solar energy would be the efficient and attractive method to get fresh water. This study was described the development of Multi Effect Distillation(MED) with solar energy desalination system. The system was designed and manufactured Multi effect distillation on the capacity of $3m^3$/day. The experimental apparatus consists mainly of ejector pump, Hot water pump, flow meter, demister, cooler, evaporator and condenser. Evaporator and condenser were made Shell&Tube Heat Exchanger type with corrugated tube. The experimental variables were chosen $75^{\circ}C$ for hot water inlet temperature, 40, 60 and $80{\ell}$/min for hot water inlet volume flow rate, 6.0 and $8.0{\ell}$/min for evaporator feed seawater flow rate, $18^{\circ}C$ for sea water inlet temperature to cover the average sea water temperature and the salinity of sea water is measured about 33,000 PPM (parts per million). for a year in Korea. This study was analyzed the results of thermal performance of Multi Effect Distillation. The results are as follows, The experimental Multi effect distillation is required about 40 kW heat source for production of $3m^3$/day fresh water. Various operating flow rate was confirm in the experiments to get the optimum design data and the results showed that the optimum total flow was $8.0{\ell}$/min. Comparison of Single Effect Distillation with Multi Effect Distillation showed MED is at least more than double of SED.

  • PDF

Effects of the Brackish Water Desalination System on Soil Environment and Growth in Squash Greenhouse Cultivation Area (시설재배지에서 기수담수화시스템 적용에 따른 토양 환경 및 애호박의 생육 영향 분석)

  • Kim, Soo-Jin;Bae, Seung-jong;Jeong, Han-Suk;Kim, Hak-Kwan;Park, Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.3
    • /
    • pp.113-121
    • /
    • 2018
  • The objectives of the research were 1) to develop the low-cost and high efficient desalination system to treat brackish water having high salt contents for irrigation at greenhouses near coast, and 2) to monitor and assess the effects of the brackish water desalination system on soil environment and growth in squash greenhouse cultivation area. The monitoring site was one of the squash greenhouse cultivation farm at Choengam-ri, Jinsang-myun, Gwangyang-si, Jeonnam-Do Monitoring results for groundwater irrigation water quality, and salinity showed a remarkable difference between control and treatment group. The salinity of soil at treatment group was less than at control group. While, the system made possible to increase the squash quantity from 4.7 ea to 6.3 ea at each and the average weight of the harvested squash was increased from 277.2 g to 295.1 g. The applied brackish water desalination system may be appled to reclaim sea or brackish irrigated area as alternative water resources, although long-term monitoring is needed to get more representative results at different level of salinity.

Numerical study on the flow characteristics of horizontal tube bundle (Tube-bundle형 열교환기의 액막 유동에 관한 시뮬레이션)

  • Kim, Pil-Hwan;Choi, Du-Youl;Woo, Ju-Sik;Jeong, Hyo-Min;Chung, Han-Shik;Kim, Kyeong-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1256-1261
    • /
    • 2009
  • Seawater amounts to 70% of the earth and represents a quite unlimited resource for the production of fresh water by desalination processes and for the extraction of dissolved salts present in it. Recently, the falling film evaporation has increased in interest as an efficient method for seawater desalination system. In the desalination system, the flow characteristics of the falling film is very important issue to make highly efficient system. So, this study is taken to investigate numerically the falling film thickness on the inlet Renold Number ranges are 400 to 700. Numerical simulations are performed using FLUENT6.3.26, a commercial CFD code.

  • PDF

A study on the development of MVR desalination plant and its performance analysis (MVR해수담수화플랜트의 개발 및 성능에 관한 연구)

  • Kim, Yeongmin;Chun, Wongee;Kim, Dongkook
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.59-65
    • /
    • 2016
  • MVR evaporation is a method of pressurizing the evaporating steam to raise its temperature with an electric compressor instead of burning fuel and reusing the heat source through the embraced heat exchanger to minimize energy use. MVR desalination system with wind power uses varying wind power instead of stable electricity and can flexibly control the volume of fresh water production. The present study introduces the design, construction and operation of a MVR desalination system of 30ton/day capacity. Experimental results, MVR compression ratio is higher than 1.5, temperature difference of the main heat exchanger is $5{\sim}7^{\circ}C$. This value shows the same performance as the designed value.