• Title/Summary/Keyword: desalination efficiency

Search Result 95, Processing Time 0.022 seconds

Treatment of organic dye solutions by electrodialysis

  • Majewska-Nowak, Katarzyna M.
    • Membrane and Water Treatment
    • /
    • v.4 no.3
    • /
    • pp.203-214
    • /
    • 2013
  • Laboratory tests were performed to determine the efficiency of dye solution desalination by electrodialysis. The study involved anionic dye and mineral salt recovery by obtaining two streams from a salt and dye mixture - dye-rich solution and salt solution. A standard anion-exchange and cation-exchange membranes or monovalent selective anion-exchange membranes were used in the ED stack. It was found that the separation efficiency was strongly dependent on the dye molecular weight. The best results for standard ion-exchange membranes were achieved for the desalination of Direct Black solution. Furthermore, the obtained results implied that the application of monovalent selective anion-exchange membranes improved the recovery of dye and salt solutions - the dye concentration in the diluate remained constant irrespective of the molecular weight of anionic dyes, whereas the salt recovery remained very high (99.5%).

LNG-Vessels Hybrid Engine Seawater Desalination Complex System (LNG 선박 하이브리드 엔진 및 해수 담수화 복합 시스템)

  • Lim, Jae Jun;Lee, Dong-Heon;Byun, Gi-Sik;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.663-664
    • /
    • 2016
  • Temperature difference power generation using sea water is a method repeatedly closed liquefaction and gasification by using the ammonia (refrigerant) of the deep sea water and surface water with a temperature difference between turning the turbine. The larger the temperature difference between the nature of the temperature characteristic energy generation development, the better. This is the story that the surface waters of the deep-water temperature difference is large. But the winter is not large temperature difference between surface water and deep water has lowered energy efficiency. And desalination technologies accounted for 97% of the earth, but we can not eat the technology to convert sea water into fresh water, fresh water produced by the desalination technology that is available for various industries such as irrigation, drinking water in the vessel.In this paper, LNG transport vessels, based on the LNG transport ship to the temperature difference power generation using cold energy of thermal energy and LNG marine diesel engines, which use the existing order to improve the temperature of the surface waters of the season that is the current problem we propose that a complex development of desalination and desalination of seawater freezing research into hybrid research and utilizing the cold energy of the engine.

  • PDF

Analysis of the ejector for low-pressure evaporative desalination system using solar energy (태양에너지 이용 저압 증발식 해수 담수시스템 이젝터 CFD 해석)

  • Hwang, In-Seon;Joo, Hong-Jin;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.137-143
    • /
    • 2010
  • In this study, the ejector design was modeled using Fluent 6.3 of FVM(Finite Volume Method) CFD(Computational Fluid Dynamics) techniques to resolve the flow dynamics in the ejector. A vacuum system with the ejector has been widely used because of its simple construction and easy maintenance. Ejector is the main part of the desalination system, of which designs determine the efficiency of system. The effects of the ejector was investigated geometry and the operating conditions in the hydraulic characteristics. The ejector consists mainly of a nozzle, suction chamber, mixing tube(throat), diffuser and draft tube. Liquid is supplied to the ejector nozzle, the fast liquid jet produced by the nozzle entrains and the non condensable gas was sucked into the mixing tube. In the present study, the multiphase CFD modeling was carried out to determine the hydrodynamic characteristics of seawater-air ejector. Two-dimensional geometry was considered with the quadrilateral-mashing scheme. The gas suction rate increases with increasing Motive flow circulating rate.

Analysis of seawater desalination energy consumption based on changes in raw water characteristics and operating condition (원수 특성 변화 및 공정운영 조건에 따른 해수담수화 에너지 소비량 분석)

  • Yun, Seung-Hyeon;Woo, Dal-Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.4
    • /
    • pp.281-289
    • /
    • 2019
  • Desalination plants are generally studied with higher operating costs compared to water supply facilities. This study was conducted to reduce the cost of water production and to preserve existing water resources. Therefore, the purpose of this study was to utilize the control valves to increase maximum efficiency, thereby reducing the power of the pumps and operating costs. Specific energy consumption was shown to reduce the process operating power by up to 1.7 times from 6.17 to $3.55kWh/m^3$ based on seawater reverse osmosis 60 bar. In addition, the water intake process was divided into pre, inter, and post-according to the use method of blasting, and the water treatment process was divided into pre, inter, and post blending. In order to reduce power consumption, the blending process was combined to operate the facility, which resulted in the reduction of power consumption in the order post > pre-inter> inter blending.

A Study of Extracting Appropriate Conditions for Efficient Desalination for the Underwater Archaeological Ceramics from Ma Island in Taean (태안 마도출토 도자기의 효율적 탈염처리를 위한 조건도출 연구)

  • Nam, Byeong-Jik;Park, Dae-Woo;Kang, Hyun-Mi;Jang, Sung-Yoon;Jung, Yong-Hwa
    • Journal of Conservation Science
    • /
    • v.26 no.2
    • /
    • pp.133-142
    • /
    • 2010
  • This paper focused on desalination method for the underwater archaeological ceramics. The desalination method applied in this study takes additional conditions such as the amount of desalting water, temperature, and agitation conditions and compares the effects of desalt process. The result of efficiency rate appears that the twenty-times of the object weight of desalting water is more effective than that of ten-times one, but shows less economic compared to the cost. In addition, the research shows that the efficiency rate has been improved around 20 to 30 %, yet such improvement is not taken into account as an effective result considering the risk of damage from the physical and chemical impact and the consumption of energy in applying additional method.

Determination of Main Factors Affecting the Electrodialysis of Succinate by Using Design of Experiment Method (실험계획법을 이용한 숙신산염 탈염의 주요 공정변수 결정)

  • Shin, Seunghan;Chang, Eugene;Lee, Do-Hoon;Kim, Sangyong
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.179-184
    • /
    • 2008
  • The separation and purification of succinate are necessary for the succinic acid production by a fermentation process. Among the purification processes, desalination of succinate is inevitable. In this work, electrodialysis was selected as a desalination method and its operating parameters affecting the degree of desalination and energy consumption were examined. Commercialized electrodialysis apparatus was used in this work and its optimum operating parameters were determined by using design of experiment (DOE) method. Voltage, concentration of succinate, and pH were selected as main parameters. Among them, voltage seemed to be the most important one. The final conversion of succinate to succinic acid was calculated when the operating parameters were optimized. Finally, the effect of impurities, such as corn steep oil, yeast extract, and dextrose on the electrodialysis efficiency was also studied.

Factors related to Performance of Reverse Osmosis Membrane in Seawater Desalination Process (해수담수화 공정에서 역삼투막의 거동에 영향을 주는 요인)

  • Park, Jun-Young;Hong, Sung-Ho;Kim, Ji-Hoon;Jeong, Woo-Won;Nam, Jong-Woo;Kim, Young-Hoon;Lee, Chang-Ha;Kim, Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.171-176
    • /
    • 2011
  • Organic matters that comprise a tiny part of seawater generally occur over 50% of membrane fouling in Reverse Osmosis Process. This study evaluates Foundation efficiency of reverse osmosis membranes under brackish and seawater conditions and resistance of organic fouling. Moreover, analyzing the membrane surface through roughness, contact angle and zeta potential results in roughness and contact angle are proportional to flux decline rate (FDR), yet FDR has high value when zeta potential is low level. Furthermore, with various membrane fouling of different raw water conditions, the flux tends to improve when pH value is high and raw water which is complex with organic and cation pollutes membrane faster than organic separated raw water condition.

Comparative study of air gap, direct contact and sweeping gas membrane distillation configurations

  • Loussif, Nizar;Orfi, Jamel
    • Membrane and Water Treatment
    • /
    • v.7 no.1
    • /
    • pp.71-86
    • /
    • 2016
  • The present study deals with a numerical simulation for the transport phenomena in three configurations of Membrane Distillation (Air Gap, Direct Contact and Sweeping Gas Membrane Distillation) usually used for desalination in order to make an objective comparison between them under the same operating conditions. The models are based on the conservation equations for the mass, momentum, energy and species within the feed saline and cooling solutions as well as on the mass and energy balances on the membrane sides. The theoretical model was validated with available data and was found in good agreement. DCMD configuration provided the highest pure water production while SGMD shows the highest thermal efficiency. Process parameters' impact on each configuration are also presented and discussed.

Application of Capacitive Deionization for Desalination of Mining Water (광산수의 탈염을 위한 축전식 탈염기술의 적용)

  • Lee, Dong-Ju;Kang, Moon-Sung;Lee, Sang-Ho;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • In this study, capacitive deionization (CDI) was introduced for desalination of mining water. Ion-exchange polymer coated carbon electrodes (IEE) were used in CDI to desalt mining water. The CDI performance using the IEE for desalination of mining water was carried out and then was compared with that using general carbon electrodes without ion-exchange polymer coating (GE). Moreover, to investigate the effect of the concentration of influent solutions on CDI performance, the CDI performance using the IEE for desalination of brackish water (NaCl 200 ppm) was also performed and analyzed. As a result, the higher salt removal efficiency, rate and the lower energy consumption in the CDI process using the IEE and mining water were obtained compared with those using the GE and mining water. It is mainly due to higher non-Faradaic current, low ohmic resistance of the influent, overlapping effect of electric double layers in micropore of the electrode. In addition, the CDI process using the IEE and brackish water shows much higher salt removal efficiency and lower salt removal rate than that using the IEE and mining water. This results from the lower concentration (i.e., higher ohmic resistance) and salt amount of the influent.

Effect of Intermittent Pressure-Assisted Forward Osmosis (I-PAFO) Operation on Colloidal Membrane Fouling and Physical Cleaning Efficiency (가압형 정삼투의 간헐적 운전이 콜로이드 파울링 및 물리세정 효율에 미치는 영향)

  • Lee, Jinwoo;Kook, Seungho;Kim, Sung-Jo;Kim, In S.
    • Membrane Journal
    • /
    • v.26 no.4
    • /
    • pp.273-280
    • /
    • 2016
  • Pressure assisted forward osmosis (PAFO) is recently introduced because of its improved process efficiency to overcome drawbacks of forward osmosis (FO) such as low water flux and reverse solute diffusion. However, it is known that membrane fouling becomes deteriorated by additional hydraulic pressure applied in PAFO compared to FO. This study was performed to investigate possibility of intermittent pressure-assisted forward osmosis (I-PAFO) operation for fouling mitigation using colloidal silica particles as model foulants. FO, PAFO were operated as well to compare with. Two different solution pH conditions (pH 3, 10) were applied to see the effect of electrostatic interactions between the membrane and silica particles on fouling tendency. In the results, higher water flux was observed during pressurization and pressure relaxation periods in I-PAFO than water flux of PAFO, and FO on both pH conditions. Water flux decreased less in I-PAFO than PAFO after fouling. It resulted in higher water flux recovery in I-PAFO than PAFO after physical cleaning.