• Title/Summary/Keyword: dermis

Search Result 467, Processing Time 0.026 seconds

The Effect of Kaempferol, guercetin on Hyaluronan-Synthesis Stimulation in Human Keratinocytes (HaCaT) (인체 피부 세포주 (HaCaT)에서 Kaempferol, Quercetin의 Hyaluronan 합성 촉진 효과에 대한 연구)

  • Kim, Seung-Hun;Nam, Gae-Won;Kang, Byung-Young;Lee, Hae-Kwang;Moon, Seong-Joon;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.1 s.49
    • /
    • pp.97-102
    • /
    • 2005
  • One of the key molecules involved in skin moisture is hyaluronan (hyaluronic acid, HA) with its associated water of hydration. The predominant component of the ECM (extracellular matrix) of skin is HA. It Is the primordial and the simplest of the GAGs (glycosaminoglycans), a water-sorbed macromolecule In extracellular matrix, Included between the vital cells of epidermis. In the skin, HA was previously thought to derive extlusively from dermis. But, recent studies revealed that HA could be synthesized in epidermis. Flavonoids are polyphenolic compounds that is found mainly in foods of plant origin. Kaempferol was known to increase glutathione synthesis in human keratinocyte. And quercetin blocked PPAR-meidated keratinocyte differentiation as lipoxygenase inhibitors. In this study, we sought to evaluate the effect of flavonid, kaempferol and quercetin on production HA in keratinocyte. We examined the changes of three human hyaluronan synthase genes (HASI, HAS2, HAS3) expression by semi-quantitative RT-PCR when kaempferol or quercetin was added to cultured human keratinocytes. We found that these flavonoids slightly upregulated HAS2, HAS3 mRNA after 24 h. And we investigated the effect on HA production by ELISA. When we evaluated the level of HA in culture medium after 24 h incubation. We found enhanced accumulation of HA in the culture medium. Although the effects of above flavonoids are less than retinoic acid, the data indicate that kaempferol, quercetin can dose-dependently increase the level of HA in epidermis cell line. It suggested that flavonoid, kaempferol, and quercetin increased production of HA in skin and it helped to elevate skin moisture and improve facial wrinkle.

Development of Dermal Transduction Epidermal Growth Factor (EGF) Using A Skin Penetrating Functional Peptide (피부투과 기능성 펩타이드를 이용한 경피투과성 상피세포성장인자의 개발)

  • Kang, Jin Sun;La, Ha Na;Bak, Sun Uk;Eom, Hyo Jung;Lee, Byung Kyu;Shin, Hee Je
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.2
    • /
    • pp.175-184
    • /
    • 2019
  • The epidermal growth factor (EGF) has a intrinsic function of inducing growth and proliferation of cells through interacting with cell membrane receptors in human epidermis and dermis layer. These functions of EGF are used as a main ingredient for wound healing medicines and anti-aging cosmetics. As a cosmetic ingredient, the EGF has a problem in exhibiting its natural efficacy due to the lack of the ability to penetrate through the stratum corneum, which is known as the skin barrier. In this study, a recombinant human epidermal growth factor ($MTD_{151}-EGF$) fused with the macromolecule transduction domain $(MTD)_{151}$ with the skin penetration ability was developed to improve the skin penetration efficiency of the EGF. Expression of $MTD_{151}-EGF$ was performed in E. coli transformed with a vector encoding the $MTD_{151}-EGF$ gene and then purified. The purified $MTD_{151}-EGF$ was evaluated using cell proliferation assay, cytotoxicity test and skin penetration test by franz diffusion cell assay and artificial skin. Cell proliferation activity of $MTD_{151}-EGF$ purified to high purity of 99% or above was equivalent to the EGF or better, and cytotoxicity was not observed. In addition, the $MTD_{151}-EGF$ showed an excellent penetration efficiency compared to the EGF in the skin penetration test with EGF and $MTD_{151}-EGF$ labeled by FITC in an artificial skin penetration model. Based on the quantitative analysis of the penetrating substance using franz diffusion cell assay, the amount of penetration was about 16 times more than that of EGF. These results can be regarded as an effective alternative to improve the existing physical transdermal penetration method related to the use of various active ingredients for cosmetics.

Relationship between Stratum Corneum Carbonylated Protein (SCCP) and Skin Biophysical Parameters (Stratum Corneum Carbonylated Protein (SCCP)의 피부 생물학적 파라미터와의 관계)

  • Lee, Yongjik;Nam, Gaewon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.2
    • /
    • pp.131-138
    • /
    • 2019
  • Carbonylated proteins (CPs) are synthesized by the chemical reaction of basic amino acid residues in proteins with aldehyde compounds yielded by lipid peroxidation. CPs are excited by a range of light from UVA to blue light, and resulted in the generation of superoxide anion radicals ($^{\cdot}O_2{^-}$) by photosensitizing reaction. Then, they CPs induce new protein carbonylation in stratum corneum through ROS generation. Furthermore, the superoxide anion radicals produce CPs in the stratum corneum (SC) through lipid peroxidation and finally affects skin conditions including color and moisture functions. The purpose of this study was to investigate the relationship between the production of stratum corneum carbonylated protein (SCCP) and the skin elasticity. 46 healthy female Koream at the ages of 30 ~ 50 years old were participated in this study for 8 weeks. The skin test was experiment conducted into two groups; placebo group (N = 23) used cream that did not contain active ingredients, and the other group (N = 23) used cream containing the elasticity improving ingredients. Test areas were the crow 's feet and the cheek. Various non-invasive methods were carried out to measure biophysical parameters on human skin indicating that dermis density and skin wrinkle were measured by using DUB scanner and Primos premium, respectively. Skin elasticity were measured using dermal torque meter (DTM310) and balistometer (BLS780). SCCP was assessed in a simple and non-invasive method using skin surface biopsy on the cheek of the subject. The amount of SCCP was determined using image analysis. All measurements were taken at 0, 4 and 8 8week. Results revealed that the amount of CP in SC was reduced when the skin wrinkle and skin elasticity related parameters were improved. This indicates that the correlation between the elasticity improvement and the amount of CP can be used as a anti-aging indicator and applicable to the skin clinical test for the measurement of skin aging in the future.

Histological and Histochemical Studies on the Cutaneous Mucous Glands According to the Development of Frog, Rana nigromaculata (개구리(Rana nigromaculata)발생에 따른 피부점액선의 조직학적 및 조직화학적 연구)

  • Kim, Han-Hwa;Noh, Yong-Tai;Chung, Young-Wha
    • The Korean Journal of Zoology
    • /
    • v.18 no.2
    • /
    • pp.51-60
    • /
    • 1975
  • The present study was performed histologically and histochemically to observe the cutaneous mucous glands in the frog, Rana nigromaculata during metamorphosis. The cutaneous thssues including dermal plicae in the dorsal portions of the frog tadpoles at each metamorphosis stage were fixed in 10% buffered formalin at$4^{\circ}C$, embedded in paraffin wax, sectioned 4 $\mu$m thickness and stained with periodic acid-Schiff(PAS) and alcian blue (AB) at both pH 2.5 and pH 1.0. The results of observation were as follows: 1. The developments of cutaneous mucous glands of the frog tadpole were begun with appearance of gland cell nest in the dermis at metamorphosis XV stage and significant numerical increases could be seen at metamorphosis XX, XXIII and XXIV stages. 2. This cutaneous mucous gland of the frog tadpole could be divided into two types; A-type glands showed strong positivities to both PAS and AB at pH 2.5 in the gland body cells and to PAS in the gland neck cells, and B-type glands at AB pH 2.5 in the gland body cells. 3. In the A-type mucous glands, the reactivities of the glandular epithelial cells to both PAS and AB stain could be first seen at the metamorphosis XIX stage of frog tadpole. The reactivities of the glandular epithelial cells to both PAS and AB pH 2.5 were gradually increased according to the process of metamorphosis after XX stage of metamorphosis. 4. The B-type mucous glands were first seen at the XX stage and the reactivity of the glandular epithelial cells to AB at pH 2.5 was gradually increased according to the process of metamorphosis after XX stage. 5. The A-type and the B-type mucous glands were in the ratio of 99 : 1, 7 : 3 and 5.5 : 4.5 for each of metamorphosis XX, XXI-XXII and XXIII-XXV stages. 6. The remarkable development of the cutaneous mucous glands of the frog tadpoles might be needed to maintain water and electrolyte balances according to the change of way from aquatic life to amphibious.

  • PDF

Effects of Nipa fruticans Wurmb Extract on Inhibition of UVB-Induced DNA Damage and MMP Expression (해죽순(Nipa fruticans Wurmb) 추출물의 UVB 유도 DNA 손상 및 MMP 발현 억제 효과)

  • So Yeon Han;Tae Won Jang;Da Yoon Lee;Ji-Sun Moon;Yong-Shin Kim;Jae Ho Park
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.3
    • /
    • pp.271-278
    • /
    • 2024
  • The human skin is an organ that protects the body from physical and chemical factors. The skin is the largest and most massive of the body's organs and is composed of the epidermis, dermis, and subcutaneous tissue. Constant UV exposure to the skin can cause DNA damage, oxidation of proteins, and contribute to adult diseases. Nypa fruticans Wurmb (NF), rich in phytochemicals (polyphenols and flavonoids), has been traditionally used for treating respiratory and other diseases. This study investigated the effects of NF ethyl acetate fraction (ENF) on DNA damage healing and inhibition of wrinkle-related factors in UVB-stimulated Hs68 cells. Westernblotting was used to assess the expression of DNA damage-related proteins and wrinkle-related protein factors. In addition, the wound recovery capability of ENF was confirmed through wound-healing experiments. ENF significantly suppressed the expression of DNA damage-related proteins Phosphorylated H2AX (γ-H2AX), checkpoint kinase 2 (Chk2), protein53 (p53), and Phosphorylated protein53 (p-p53). Furthermore, ENF inhibited the expression of wrinkle-related proteins matrix metalloproteinase-1 (MMP-1), matrix metalloproteinase-3 (MMP-3), and matrix metalloproteinase-9 (MMP-9). High concentrations of ENF also enhanced wound healing in Hs68 cells. ENF is thought to have the potential to heal DNA damage by significantly suppressing the expression of γ-H2AX, Chk2, p53, and p-p53, as well as to inhibit wrinkle formation by suppressing the expression of MMP-1, MMP-3, and MMP-9. These results suggest that ENF can be used as a natural resource to suppress skin damage caused by UVB by regulating the γ-H2AX, Chk2, p53, and MMP pathways in Hs68 cells induced by UVB.

The Effect of Two Terpenoids, Ursolic Acid and Oleanolic Acid on Epidermal Permeability Barrier and Simultaneously on Dermal Functions (우솔릭산과 올레아놀산이 피부장벽과 진피에 미치는 영향에 대한 연구)

  • Suk Won, Lim;Sung Won, Jung;Sung Ku, Ahn;Bora, Kim;In Young, Kim;Hee Chang , Ryoo;Seung Hun, Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.263-278
    • /
    • 2004
  • Ursolic acid (UA) and Oleanolic acid (ONA), known as urson, micromerol and malol, are pentacyclic triterpenoid compounds which naturally occur in a large number of vegetarian foods, medicinal herbs, and plants. They may occur in their free acid form or as aglycones for triterpenoid saponins, which are comprised of a triterpenoid aglycone, linked to one or more sugar moieties. Therefore UA and ONA are similar in pharmacological activity. Lately scientific research, which led to the identification of UA and ONA, revealed that several pharmacological effects, such as antitumor, hepato-protective, anti-inflammatory, anticarcinogenic, antimicrobial, and anti-hyperlipidemic could be attributed to UA and ONA. Here, we introduced the effect of UA and ONA on acutely barrier disrupted and normal hairless mouse skin. To evaluate the effects of UA and ONA on epidermal permeability barrier recovery, both flanks of 8-12 week-old hairless mice were topically treated with either 0.01-0.1mg/mL UA or 0.1-1mg/mL ONA after tape stripping, and TEWL (transepidermal water loss) was measured. The recovery rate increased in those UA or ONA treated groups (0.1mg/mL UA and 0.5mg/mL ONA) at 6h more than 20% compared to vehicle treated group (p < 0.05). Here, we introduced the effects of UA and ONA on acute barrier disruption and normal epidermal permeability barrier function. For verifying the effects of UA and ONA on normal epidermal barrier, hydration and TEWL were measured for 1 and 3 weeks after UA and ONA applications (2mg/mL per day). We also investigated the features of epidermis and dermis using electron microscopy (EM) and light microscopy (LM). Both samples increased hydration compared to vehicle group from 1 week without TEWL alteration (p < 0.005). EM examination using RuO4 and OsO4 fixation revealed that secretion and numbers of lamellar bodies and complete formation of lipid bilayers were most prominent (ONA=UA > vehicle). LM finding showed that thickness of stratum corneum (SC) was slightly increased and especially epidermal thickening and flattening was observed (UA > ONA > vehicle). We also observed that UA and ONA stimulate epidermal keratinocyte differentiation via PPAR Protein expression of involucrin, loricrin, and filaggrin increased at least 2 and 3 fold in HaCaT cells treated with either ONA (10${\mu}$M) or UA (10${\mu}$M) for 24 h respectively. This result suggested that the UA and ONA can improve epidermal permeability barrier function and induce the epidermal keratinocyte differentiation via PPAR Using Masson-trichrome and elastic fiber staining, we observed collagen thickening and elastic fiber elongation by UA and ONA treatments. In vitro results of collagen and elastin synthesis and elastase inhibitory activity measurements were also confirmed in vivo findings. These data suggested that the effects of UA and ONA related to not only epidermal permeability barrier functions but also dermal collagen and elastic fiber synthesis. Taken together, UA and ONA can be relevant candidates to improve epidermal and dermal functions and pertinent agents for cosmeseutical applications.

Time Course Variation of Vitamin $C_3$ Content in Leg Skin of Broiler Chicks Exposed to Different Dose of UVB Light (자외선의 상이한 선양을 조사한 브로일러 병아리의 다리 피부중 비타민 $C_3$ 함양의 경시적 변화)

  • 장윤환;김강수;여영수;강훈석;조인호;배은경
    • Korean Journal of Poultry Science
    • /
    • v.20 no.2
    • /
    • pp.93-105
    • /
    • 1993
  • This study was carried out to determine the concentrations of previtamin D$_3$(PreD$_3$), lumisterol$_3$(L3), tachystero1$_3$(73), vitamin D$_3$(VD$_3$) and provitamin D$_3$(ProD$_3$) in leg skins of broiler chicks exposed to UVB lights (maximum intensity at 297 nm) with dose of 0.204 or 0.409 mJ/$\textrm{cm}^2$(30 or 60 min irradiation) . The broiler Hubbard line day old chicks(2 dose $\times$9 elapsed time $\times$4 replica+10 control=82) were fed VD-deficient diet for 31 days in a windowless subdued light room. The skin was collected at 0, 6, 12, 18, 30, 42, 66, 90 or 138 hr after UVB irradiation. The skin lipid was extracted by 9% ethyl acetate/n-hexane, and the fraction of VD$_3$ and its analogues was purified by Sep-Pak silica cartridge. The straight phase HPLC was utilized to analyze ProD$_3$ and its products. The mole %(absolute level expressed in ng/$\textrm{cm}^2$) of PreD$_3$ in leg skin (epidermis+dermis) was 4.67%(44 ng/$\textrm{cm}^2$) or 3.97%(37 ng/$\textrm{cm}^2$) right after UVB irradiation by 0.204 or 0.409 mJ/$\textrm{cm}^2$(30 or 60 min) at 15 cm distance, respectively. It content in leg skin at 0 hr after exposure was 7.24%(12 ng/$\textrm{cm}^2$) or 0.92%(9 ng/$\textrm{cm}^2$), respectively. The increase in irradiation dose did not affect proportionally the If synthesis.73 concentration in leg skin was 0.58%(S ng/$\textrm{cm}^2$) or 0.57%(6 ng/$\textrm{cm}^2$), respectively 0 hr after irradiation. The VD$_3$ in leg skin of birds exposed to UVB light with dose of 0.204 or 0.409 mJ/$\textrm{cm}^2$ was 2.13% (21 ng/$\textrm{cm}^2$) or 0.97% (16ng/$\textrm{cm}^2$), respectively at 0 hr after exposure, 2.72%(26ng/$\textrm{cm}^2$) or 3.84%(37ng/$\textrm{cm}^2$), respectively at 6 hr, and 4.30% ((33ng/$\textrm{cm}^2$) or 6.40%(76ng/$\textrm{cm}^2$), respectively at 12 hr. The peak concentration of VD$_3$ was presented at 18 or 30 hr when 0.204 or 0.409 mJ/$\textrm{cm}^2$) was treated, respectively. It was shown that 18~30 hr were necessary for the thermal conversion of PreD$_3$ into VD$_3$ in the leg skin of broiler chicks. The ProD$_3$ contents in leg skins of negative control, 0.204 mJ/$\textrm{cm}^2$ and 0.409 mJ/$\textrm{cm}^2$ treated birds were 966, 948 and 815 ng/$\textrm{cm}^2$, respectively at right before and after UVB exposure. It was estimated that 18 or 151 ng/$\textrm{cm}^2$ of ProD$_3$ was isomerized to PreD$_3$, L$_3$, T$_3$ and VD$_3$ when exposed to 0.204 or 0.409 mJ/$\textrm{cm}^2$, respective)y. Consequently it was shown that when double dose of UVB light was applied to irradiate the chick body, more but not double synthesis of VD$_3$ and its analogues was occured in leg skin of brolier chicks.

  • PDF