• Title/Summary/Keyword: dermal

Search Result 1,056, Processing Time 0.03 seconds

Effects of Kanghwalsokdan-tang on Dermal Fibroblast (강활속단탕(羌活續斷湯)이 인체피부 섬유아세포에 미치는 영향)

  • Yoo, Jeong-Eun;Choi, Kyung-Hee;Lim, Hyun-Jung;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.25 no.1
    • /
    • pp.20-33
    • /
    • 2012
  • Objectives: This study was performed to elucidate the effects of Kanghwalsokdan-tang extract(KS) on hyper-plasy of collagen and cell damage in UVB-irradiated dermal fibroblast. Methods: To demonstrate the effects of KS on wound healing we used human dermal fibroblast(F6). We evaluated the amount of increased PICP, TIMP-1 in dermal fibroblast. PICP, TIMP-1 concentration was measured using EIA kit. Also, we measured the nitrite production, and LDH release in UVB-irradiated dermal fibroblast to elucidate the action-mechanism of KS. Results: 1. KS decreased the cell proliferation of dermal fibroblast. 2. KS decreased the biosynthesis of collagen in dermal fibroblast. 3. KS decreased the synthesis of TIMP-1 in dermal fibroblast. 4. KS had no effect on the LDH-release of UVB-irradiated dermal fibroblast. 5. KS inhibited nitrite production in UVB-irradiated dermal fibroblast. Conclusions: From the results, we concluded that KS has a protective effect on wound healing and photoaging.

Effects of Danchisoyo-san on UVB-induced Cell Damage and Gene Expression in Dermal Fibroblast (단치소요산(丹梔逍遙散)이 자외선을 조사한 피부진피세포의 활성 및 유전자발현에 미치는 영향)

  • Lim, Hyun-Jung;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.24 no.2
    • /
    • pp.13-32
    • /
    • 2011
  • Objectives: This study was performed to elucidate the effects of Danchisoyo-san (DS) on cell damage and gene expression in UVB-exposed dermal fibroblast. Methods: To demonstrate the inhibitory effects of DS on aging of the skin, we used human dermal fibroblast(F6) and UVB light(30 mJ/$cm^2$) was used to damage to dermal fibroblast. We measured the nitrite production, LDH release, and gene expression in UVB-irradiated dermal fibroblast to elucidate the actionmechanism of DS. Also, we evaluated the amount of increased PICP, TIMP-1 in dermal fibroblast. PICP, TIMP-1 concentration was measured using EIA kit, and gene expression (MMP-1, procollagen, c-fos, c-jun, NF-kB, Bcl-2, Bcl-xL, iNOS) were determined using real-time PCR. Results: 1. DS inhibited LDH-release, nitrite production in UVB-irradiated dermal fibroblast. 2. DS suppressed the gene expression of MMP-1 in UVB-irradiated dermal fibroblast. 3. DS increased the gene expression of procollagen in UVB-iradiated dermal fibroblast. 4. DS suppressed the gene expression of c-jun, c-fos, NF-kB, iNOS in UVBirradiated dermal fibroblast. 5. DS increased the gene expression of Bcl-2 in UVB-iradiated dermal fibroblast. 6. DS increased the cell proliferation of dermal fibroblast. Conclusions: From the results, we concluded DS increases the cell proliferation and collagen synthesis in dermal fibroblast. So we suggest that DS has the antiwrinkle effects.

Effects of Kwibi-tang on Dermal Fibroblast (귀비탕(歸脾湯)이 인체피부 섬유아세포에 미치는 영향)

  • Je, Yun-Mo;Yoo, Jeong-Eun;Choi, Kyung-Hee;Lim, Hyun-Jung;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.24 no.4
    • /
    • pp.10-19
    • /
    • 2011
  • Objectives: This study was performed to elucidate the effects of Kwibi-tang extract(KB) on dermal fibroblast. Methods: To demonstrate the effects of KB on dermal fibroblast, we used human dermal fibroblast(F6) and UVB light(30 $mJ/cm^2$) was used to damage to dermal fibroblast. we measured the nitrite production, LDH release in UVB-irradiated dermal fibroblast to elucidate the action-mechanism of KB. Also, we evaluated cell proliferation of dermal fibroblast and the amount of increased PICP, TIMP-1 in dermal fibroblast. Results: 1. KB decreased the cell proliferation of F6 dermal fibroblast in concentration of 50 ${\mu}g/ml$. 2. KB decreased the synthesis of PICP in concentration of 50 ${\mu}g/ml$. 3. KB decreased the synthesis of TIMP-1 in concentration of 50 ${\mu}g/ml$. 4. KB have no effect on the damage in UVB-irradiated F6 dermal fibroblast. Conclusions: From the results, we concluded KB decreases the cell proliferation and collagen synthesis in dermal fibroblast. So we suggest that KB has the anti-hyperplasy of dermal fibroblast.

A Study on Monitoring Techniques for Dermal Exposure to Hazardous Chemicals

  • Lee, Su-Gil;Lee, Nae-Woo
    • International Journal of Safety
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • Due to dermal exposure to hazardous chemicals causing potential adverse health symptoms through skin absorption, dermal monitoring has had an important role in assessing such exposure. This paper overviews comparatively a number of studies of dermal monitoring with different methodologies such as surface monitoring, skin wiping, skin washing, adhesive methods and tape stripping, fluorescence and infrared spectroscopy, skin patches, pads and clothing, video exposure monitoring and dermal exposure assessment toolkits and models. However, there is a lack of information on the relationship between exposure levels and adverse health symptoms. Therefore, more specific strategies for dermal exposure monitoring should be developed and standardized with further development of biological and ocular monitoring.

Inhalation and Dermal Exposures to Chloroform while Bathing (목욕시 Chloroform에 대한 흡기 및 피부 접촉 노출)

  • 조완근
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.301-310
    • /
    • 1998
  • Recently, bathes have been suspected to an Important source of indoor exposure to volatile organic compounds(VOCs). Two experiments were conducted to evaluate chloroform exposure and corresponding body burden by exposure routes while bathing. Another experiment was conducted to ekamine the chloro- form dose during dermal exposure and the chloroform decay In breath after dermal exposure. The chioroform dose was determined based on exhaled breath analysis. The ekamine breath concentration measured after normal baths (2.8 Vg/$m^3$) was approxidmately 13 tomes higher that measured prior to normal bathes (0.2 ug/$m^3$). Based on the means of the normalized post exposure chloroform breath concentration. the dermal exposure was estimated to contribute to 74% of total chloroform body burden while bathing. The Internal dose from bathing (Inhalation plus dermal) was comparable to the dose ostimated Srom dally water Ingestion. The rusk associated 10 a weekly, 30-min bath was estimated to be 1 x 10.5, while the rusk firom dally Ingestion of tap water was to be $0.5{\times}0^{-5} for 0.151 and 6.5{\times}10^{-5}$ for 2. 0 1. Chloroform breath concentration Increased gradually during the 60 minute dermal exposure. The breath decay after the dermal exposure showed two-phase mechanism, with early raped decay and the second slow decay. The mathematical model was developed to describe the relationship between water and air chloroform concentrations, with $R^2$ : 0.4 and p<0.02.

  • PDF

Development of Dermal Equivalent Using Mouse Fibroblasts (세포조직배양법을 이용한 쥐 인공피부의 개발)

  • Yang, Eun-Kyoung;Lee, Jae-Ho;Choe, Tae-Boo;Park, Jung-Keug
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.381-391
    • /
    • 1993
  • As the first stage of development of an artificial skin, fibroblasts were cultured in the collagen matrices to make a living dermal equivalent. Mouse embryonic fibroblasts were incorporated into a collagen matrices on plastic dishes containing concentrated DMEM culture media supplemented with sodium bicarbonate, hepes, antibiotics and fetal bovine serum. As the growth stimulation components, glycosaminoglycans were added: hyaluronic acid, chondroitin sulfate, heparin, chitosan were incorporated into the media at a concentration of either 1% or 5% w/w/ to collagen in order to investigate the effect on development of dermal equivalent. After the few days of incubation, gel matrics were contracted and firm dermal equivalent were formed. And the keratinocytes were cultured on top of dermal equivalent and make a three dimensional artificial skin tissue.

  • PDF

HEALING PATTERNS OF THE ACELLULAR DERMAL MATRIX DEPEND ON GRAFT METHOD IN THE RABBIT EARS (가토의 귀에서 무세포성 진피 기질의 이식 방법에 따른 치유 양상)

  • Ryu, Jae-Young;Ryu, Sun-Youl
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.3
    • /
    • pp.216-221
    • /
    • 2009
  • Purpose: The retention of the basement membrane complex, which was the unique feature of the acellular dermal matrix ($AlloDerm^{(R)}$), plays an important role in the normal process of wound healing. The present study was aimed to compare the healing of the acellular dermal matrix according to the graft method in the rabbit ear. Materials and methods: Six mature rabbits weighing about 3.0 kg were used, $10\;{\times}\;5\;mm$ sized subcutaneous pockets were created between the ear skin and the underlying perichondrium. In the control group, the acellular dermal matrix was grafted with the basement membrane facing toward the perichondrium. On the contrary, the acellular dermal matrix was grafted with the basement membrane facing toward the skin side in the experimental group I. In the experimental group II, the acellular dermal matrix was grafted like rolled configuration with basement membrane side in. The grafted site was picked at 3, 7, and 21 days after the graft. Serial sections were processed by H-E stain and examined under light microscopy to assess the healing patterns. Results: There was no distinct volume loss in the gross examination, but resorption was observed from the edge of the acellular dermal matrix in the histological examination. The space of resorption was replaced by the newly formed fibrous tissues and vessels. The inflammatory cells were more increased at 7 days after the graft than the early days. However, inflammation was decreased at 21 days after the graft. Regardless of the graft direction, no differences were observed between the control and the experimental group I in the healing patterns. Conclusion: These results suggest that the acellular dermal matrix can be used simply and effectively without regard to the graft direction as a substitute of autogenous material for repairing soft tissue defect.

Evaluation of Dermal Absorption Rate of Pesticide Chlorpyrifos Using In Vitro Rat Dermal Tissue Model and Its Health Risk Assessment

  • Kim, Su-Heyun;Jang, Jae-Bum;Park, Kyung-Hun;Paik, Min-Kyoung;Jeong, Sang-Hee
    • Biomedical Science Letters
    • /
    • v.22 no.4
    • /
    • pp.140-149
    • /
    • 2016
  • All pesticides must be assessed strictly whether safe or not when agricultural operators are exposed to the pesticides in farmland. A pesticide is commonly regarded as safe when estimated dermal absorption amount is lower than the acceptable operator's exposure level (AOEL). In this study, dermal absorption rate of chlorpyrifos, a widely used organophosphate insecticide, was investigated using rat dermal tissue model. Chlorpyrifos wettable powder solved in water (250, 500 and 2,500 ppm) was applied to freshly excised rat dermal slices ($341{\sim}413{\mu}m$ thickness) on static Franz diffusion cells at $32^{\circ}C$ for 6 hours. After exposure period of 6 hours, and then washing-at residual amount of chlorpyrifos was analyzed in dermal tissues, tape strips, washing solution, washing swabs of receptor bottles and receptor fluids at 1, 2, 4, 8 and 24 hours. Chlorpyrifos was only detected in dermal tissue but not found in receptor fluid at each concentration and time point, and the absorption rate of 250, 500 and 2,500 ppm was 2.36%, 1.96% and 1.69%, respectively. The estimated exposure level of chlorpyrifos was calculated as 0.012 mg/kg bw/day. The health risk for farmers in this condition is a level of concern because the estimated exposure level is 12 times higher than AOEL 0.001 mg/kg bw/day. However, actual health risk will be alleviated than estimated because absorbed chlorpyrifos is not permeated into internal body system and only retained in skin layer.

Evaluation of an Amniotic Membrane-Collagen Dermal Substitute in the Management of Full-Thickness Skin Defects in a Pig

  • Kim, Hyunji;Son, Daegu;Choi, Tae Hyun;Jung, Samhyun;Kwon, Sunyoung;Kim, Junhyung;Han, Kihwan
    • Archives of Plastic Surgery
    • /
    • v.40 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • Background To minimize the inflammatory reaction and improve healing, a new modified dermal substitute composed of an atelocollagen, chondroitin-6-sulfate, and amniotic membrane (AM) was applied to full-thickness skin defects in a pig. Atelocollagen was extracted from bovine skin, and two modified dermal substitutes were generated according to the cross-linking type. Methods The AM-collagen dermal substitutes were characterized and compared with currently used dermal substitutes in a pig skin defect model. There were five experimental groups: dehydrothermal (DHT) cross-linking atelocollagen with the AM on the top (AM-DHT), DHT and chemical cross-linking atelocollagen with the AM on the top (AM-DHT/chemical), Terudermis, Integra, and AlloDerm. After $3{\times}3cm$ full-thickness skin defects on the back of a pig were created, each dermal substitutes dermal substitutes was randomly grafted on the defects. Two weeks after grafting, autologous partial-thickness skin was over-grafted on the neodermis. The take rate of the dermal substitutes, skin, and histological sections were all assessed at 1, 2, and 4 weeks postoperatively. Results More rapid healing and a higher take rate were evident in the AM-DHT and Terudermis groups. Histological examination revealed fewer inflammatory cells and more fibroblast hyperplasia in these two groups. Four weeks after surgery, the amount of newly formed collagen was significantly more appropriate in the AM-DHT group. Conclusions These observations provide supporting evidence that a newly developed amniotic-collagen dermal substitute may inhibit inflammatory reactions and promote wound healing.

Periodontal tissue engineering by hPDLF seeding on scaffold (Scaffold상에 식립한 사람치주인대섬유모세포를 통한 치주조직공학)

  • Kim, Seong Sin;Kim, Byung-Ock;Park, Joo-Cheol;Jang, Hyun-Seon
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.757-765
    • /
    • 2006
  • Human periodontal ligament fibroblasts (hPDLF) are very important for curing the periodontal tissue because they can be differentiated into various cells. A tissue engineering approach using a cell-scaffold is essential for comprehending today's periodontal tissue regeneration procedure. This study examined the possibility of using an acellular dermal matrix as a scaffold for human periodontalligament fibroblast (hPDLF). The hPDLF was isolated from the middle third of the root of periodontally healthy teeth extracted for orthodontic reasons. The cells were cultured in a medium containing Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum at $37^{\circ}C$ in humidified air with 5% $CO_2$. The acellular dermal matrix(ADM) was provided by the US tissue banks(USA). Second passage cells were used in this study. The hPDLF cells were cultured with the acellular dermal matrix for 2 days, and the dermal matrix cultured by the hPDLF was transferred to a new petri dish and used as the experimental group. The control group was cultured without the acellular dermal matrix, The control and experimental cells were cultured for six weeks. The hPDLF cultured on the acellular dermal matrix was observed by Transmission Electron microscopy (TEM). Electron micrography shows that the hPDLF was proliferated on the acellular dermal matrix. This study suggests that the acellular dermal matrix can be used as a scaffold for hPDLF.