• Title/Summary/Keyword: depth-map

Search Result 814, Processing Time 0.03 seconds

Iterative Deep Convolutional Grid Warping Network for Joint Depth Upsampling (반복적인 격자 워핑 기법을 이용한 깊이 영상 초해상화 기술)

  • Kim, Dongsin;Yang, Yoonmo;Oh, Byung Tae
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.965-972
    • /
    • 2020
  • Depth maps have distance information of objects. They play an important role in organizing 3D information. Color and depth images are often simultaneously obtained. However, depth images have lower resolution than color images due to limitation in hardware technology. Therefore, it is useful to upsample depth maps to have the same resolution as color images. In this paper, we propose a novel method to upsample depth map by shifting the pixel position instead of compensating pixel value. This approach moves the position of the pixel around the edge to the center of the edge, and this process is carried out in several steps to restore blurred depth map. The experimental results show that the proposed method improves both quantitative and visual quality compared to the existing methods.

Low Resolution Depth Interpolation using High Resolution Color Image (고해상도 색상 영상을 이용한 저해상도 깊이 영상 보간법)

  • Lee, Gyo-Yoon;Ho, Yo-Sung
    • Smart Media Journal
    • /
    • v.2 no.4
    • /
    • pp.60-65
    • /
    • 2013
  • In this paper, we propose a high-resolution disparity map generation method using a low-resolution time-of-flight (TOF) depth camera and color camera. The TOF depth camera is efficient since it measures the range information of objects using the infra-red (IR) signal in real-time. It also quantizes the range information and provides the depth image. However, there are some problems of the TOF depth camera, such as noise and lens distortion. Moreover, the output resolution of the TOF depth camera is too small for 3D applications. Therefore, it is essential to not only reduce the noise and distortion but also enlarge the output resolution of the TOF depth image. Our proposed method generates a depth map for a color image using the TOF camera and the color camera simultaneously. We warp the depth value at each pixel to the color image position. The color image is segmented using the mean-shift segmentation method. We define a cost function that consists of color values and segmented color values. We apply a weighted average filter whose weighting factor is defined by the random walk probability using the defined cost function of the block. Experimental results show that the proposed method generates the depth map efficiently and we can reconstruct good virtual view images.

  • PDF

A Study on 3D Panoramic Generation using Depth-map (깊이지도를 이용한 3D 파노라마 생성에 관한 연구)

  • Cho, Seung-Il;Kim, Jong-Chan;Ban, Kyeong-Jin;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.831-838
    • /
    • 2011
  • Computer vision research area, a division of computer graphics application area that creates realistic visualization in computer, conducts vigorously researches on developing realistic 3D model or virtual environment. As the popularization and development of 3D display makes common users easy to experience a solid 3D virtual reality, the demand for virtual reality contents are increasing. This paper proposes 3D panorama system using depth point location-based depth map generation method. 3D panorama using depth map gives an effect that makes users feel staying at real place and looking around nearby circumstances. Also, 3D panorama gives free sight point for both nearby object and remote one and provides solid 3D video.

Implementation of a Stereo Vision Using Saliency Map Method

  • Choi, Hyeung-Sik;Kim, Hwan-Sung;Shin, Hee-Young;Lee, Min-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.674-682
    • /
    • 2012
  • A new intelligent stereo vision sensor system was studied for the motion and depth control of unmanned vehicles. A new bottom-up saliency map model for the human-like active stereo vision system based on biological visual process was developed to select a target object. If the left and right cameras successfully find the same target object, the implemented active vision system with two cameras focuses on a landmark and can detect the depth and the direction information. By using this information, the unmanned vehicle can approach to the target autonomously. A number of tests for the proposed bottom-up saliency map were performed, and their results were presented.

Disparity map image Improvement and object segmentation using the Correlation of Original Image (입력 영상과의 상관관계를 이용한 변이 지도 영상의 개선 및 객체 분할)

  • Shin, Dong-Jin;Choi, Min-Soo;Han, Dong-Il
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.317-318
    • /
    • 2006
  • There are lot of noises and errors in depth map image which is gotten by using a stereo camera. These errors are caused by mismatching of the corresponding points which occur in texture-less region of input images of stereo camera or occlusions. In this paper, we use a method which is able to get rid of the noises through post processing and reduce the errors of disparity values which are caused by the mismatching in the texture-less region of input images through the correlation between the depth map images and the input images. Then we propose a novel method which segments the object by using the improved disparity map images and projections.

  • PDF

Depth Upsampler Using Color and Depth Weight (색상정보와 깊이정보 가중치를 이용한 깊이영상 업샘플러)

  • Shin, Soo-Yeon;Kim, Dong-Myung;Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.431-438
    • /
    • 2016
  • In this paper, we present an upsampling technique for depth map image using color and depth weights. First, we construct a high-resolution image using the bilinear interpolation technique. Next, we detect a common edge region using RGB color space, HSV color space, and depth image. If an interpolated pixel belongs to the common edge region, we calculate weighting values of color and depth in $3{\times}3$ neighboring pixels and compute the cost value to determine the boundary pixel value. Finally, the pixel value having minimum cost is determined as the pixel value of the high-resolution depth image. Simulation results show that the proposed algorithm achieves good performance in terns of PSNR comparison and subjective visual quality.

Nonlinear model for estimating depth map of haze removal (안개제거의 깊이 맵 추정을 위한 비선형 모델)

  • Lee, Seungmin;Ngo, Dat;Kang, Bongsoon
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.492-496
    • /
    • 2020
  • The visibility deteriorates in hazy weather and it is difficult to accurately recognize information captured by the camera. Research is being actively conducted to remove haze so that camera-based applications such as object localization/detection and lane recognition can operate normally even in hazy weather. In this paper, we propose a nonlinear model for depth map estimation through an extensive analysis that the difference between brightness and saturation in hazy image increases non-linearly with the depth of the image. The quantitative evaluation(MSE, SSIM, TMQI) shows that the proposed haze removal method based on the nonlinear model is superior to other state-of-the-art methods.

Object Segmentation Using Depth Map (깊이 맵을 이용한 객체 분리 방법)

  • Yu, Kyung-Min;Cho, Yongjoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.639-640
    • /
    • 2013
  • In this study, a new method that finds an area where interesting objects are placed to generate DIBR-based intermediate images with higher quality. This method complements the existing object segmentation algorithm called Grabcut by finding the bounding box automatically, whereas the existing algorithm requires a user to select the region specifically. Then, the histogram of the depth map information is then used to separate the background and the frontal objects after applying the GrabCut algorithm. By using the new method, it is found that it produces better result than the existing algorithm. This paper describes the new method and future research.

  • PDF

A Study on the Generation and Processing of Depth Map for Multi-resolution Image Using Belief Propagation Algorithm (신뢰확산 알고리즘을 이용한 다해상도 영상에서 깊이영상의 생성과 처리에 관한 연구)

  • Jee, Innho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.201-208
    • /
    • 2015
  • 3D image must have depth image for depth information in order for 3D realistic media broadcasting. We used generally belief propagation algorithm to solve probability model. Belief propagation algorithm is operated by message passing between nodes corresponding to each pixel. The high resolution image will be able to precisely represent but that required much computational complexity for 3D representation. We proposed fast stereo matching algorithm using belief propagation with multi-resolution based wavelet or lifting. This method can be shown efficiently computational time at much iterations for accurate disparity map.

A Technique for Building Occupancy Maps Using Stereo Depth Information and Its Application (스테레오 깊이 정보를 이용한 점유맵 구축 기법과 응용)

  • Kim, Nak-Hyun;Oh, Se-Jun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.3
    • /
    • pp.1-10
    • /
    • 2008
  • An occupancy map is a representation methodology describing the region occupied by objects in 3D space, which can be utilized for autonomous navigation and object recognition. In this paper, we describe a technique for building an occupancy map using depth data extracted from stereo images. In addition, some techniques are proposed for utilizing the occupancy map for the segmentation of object regions. After the geometric information on the ground plane is extracted from a disparity image, the occupancy map is constructed by projecting each matched point to the ground plane-based 3D space. We explain techniques for extracting moving object regions using the occupancy map and present experimental results using real stereo images.