• Title/Summary/Keyword: depth-hybrid

Search Result 280, Processing Time 0.029 seconds

A Laser-Applied Hybrid Focus Method for the Measurement of a Surface Morphology with Depth Discontinuity (깊이불연속 형상 측정을 위한 레이저 응용 하이브리드 초점법)

  • Kim, Gyung-Bum;Shin, Young-Su;Moon, Soon-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.111-118
    • /
    • 2006
  • A hybrid focus method with multiple laser slits is newly proposed for the measurement of surface morphology with depth discontinuity, and it is based on the integration of DFB and DFF. Rough depth information is estimated through calibration tables which are constructed by DFD with multiple laser slits, and then DFF is applied to only each specific depth range using the rough depth information resulting from DFD. The proposed hybrid method gives more accurate results than DFD and DFF, and faster measurement than DFF in the vicinity of depth discontinuity Its performance is verified through experiments of calibration blocks with sharp depth discontinuity.

A Hybrid Focus Method Using Multiple Laser Slits (다중 레이저 슬릿광을 이용한 하이브리드 초점 방법)

  • Shin Y.S.;Kim G.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.706-709
    • /
    • 2005
  • A hybrid focus method with multiple laser slits has been newly proposed and it is based on the integration of DFD and DFF Rough depth information is estimated using DFD equipped with multiple laser slits, and then DFF is applied to only each specific depth range using the depth information resulting from DFD. The proposed hybrid method gives more accurate results than DFD and DFF, and faster measurement than DFF. Its performance has been verified through experiments of calibration blocks with sharp depth discontinuity.

  • PDF

Depth Image Based Feature Detection Method Using Hybrid Filter (융합형 필터를 이용한 깊이 영상 기반 특징점 검출 기법)

  • Jeon, Yong-Tae;Lee, Hyun;Choi, Jae-Sung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.6
    • /
    • pp.395-403
    • /
    • 2017
  • Image processing for object detection and identification has been studied for supply chain management application with various approaches. Among them, feature pointed detection algorithm is used to track an object or to recognize a position in automated supply chain systems and a depth image based feature point detection is recently highlighted in the application. The result of feature point detection is easily influenced by image noise. Also, the depth image has noise itself and it also affects to the accuracy of the detection results. In order to solve these problems, we propose a novel hybrid filtering mechanism for depth image based feature point detection, it shows better performance compared with conventional hybrid filtering mechanism.

Generation of ROI Enhanced High-resolution Depth Maps in Hybrid Camera System (복합형 카메라 시스템에서 관심영역이 향상된 고해상도 깊이맵 생성 방법)

  • Kim, Sung-Yeol;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.13 no.5
    • /
    • pp.596-601
    • /
    • 2008
  • In this paper, we propose a new scheme to generate region-of-interest (ROI) enhanced depth maps in the hybrid camera system, which is composed of a low-resolution depth camera and a high-resolution stereoscopic camera. The proposed method creates an ROI depth map for the left image by carrying out a three-dimensional (3-D) warping operation onto the depth information obtained from the depth camera. Then, we generate a background depth map for the left image by applying a stereo matching algorithm onto the left and right images captured by the stereoscopic camera. Finally, we merge the ROI map with the background one to create the final depth map. The proposed method provides higher quality depth information on ROI than the previous methods.

Depth-hybrid speeded-up robust features (DH-SURF) for real-time RGB-D SLAM

  • Lee, Donghwa;Kim, Hyungjin;Jung, Sungwook;Myung, Hyun
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.33-44
    • /
    • 2018
  • This paper presents a novel feature detection algorithm called depth-hybrid speeded-up robust features (DH-SURF) augmented by depth information in the speeded-up robust features (SURF) algorithm. In the keypoint detection part of classical SURF, the standard deviation of the Gaussian kernel is varied for its scale-invariance property, resulting in increased computational complexity. We propose a keypoint detection method with less variation of the standard deviation by using depth data from a red-green-blue depth (RGB-D) sensor. Our approach maintains a scale-invariance property while reducing computation time. An RGB-D simultaneous localization and mapping (SLAM) system uses a feature extraction method and depth data concurrently; thus, the system is well-suited for showing the performance of the DH-SURF method. DH-SURF was implemented on a central processing unit (CPU) and a graphics processing unit (GPU), respectively, and was validated through the real-time RGB-D SLAM.

Intermixing Surface and Volume Visualization Using Layered Depth Images (다중 깊이 영상을 이용한 볼륨-표면 혼합 가시화)

  • Kye, Heewon
    • Journal of Korea Game Society
    • /
    • v.13 no.2
    • /
    • pp.99-110
    • /
    • 2013
  • As volume rendering has been applied for computer game, the visualization of volume data with surface data in one scene has been required. Though a hybrid rendering of volume and surface data have been developed using the GPGPU functionality, computer games which run on low-level hardware are difficult to perform the hybrid rendering. In this paper, we propose a new hybrid rendering based on DirectX 9.0 and general hardware. We generate the layered depth images from surface data using a new method to reduce the depth complexity and generation time. Then, we perform the hybrid rendering using the layered depth images. In the rendering process, we suggest a new method to transform the coordinate system from a surface coordinate to a volume coorinate and propose an accelerated rendering technique. As the result, we can perform volume-surface hybrid rendering in an efficient way.

Hybrid Camera System with a TOF and DSLR Cameras (TOF 깊이 카메라와 DSLR을 이용한 복합형 카메라 시스템 구성 방법)

  • Kim, Soohyeon;Kim, Jae-In;Kim, Taejung
    • Journal of Broadcast Engineering
    • /
    • v.19 no.4
    • /
    • pp.533-546
    • /
    • 2014
  • This paper presents a method for a hybrid (color and depth) camera system construction using a photogrammetric technology. A TOF depth camera is efficient since it measures range information of objects in real-time. However, there are some problems of the TOF depth camera such as low resolution and noise due to surface conditions. Therefore, it is essential to not only correct depth noise and distortion but also construct the hybrid camera system providing a high resolution texture map for generating a 3D model using the depth camera. We estimated geometry of the hybrid camera using a traditional relative orientation algorithm and performed texture mapping using backward mapping based on a condition of collinearity. Other algorithm was compared to evaluate performance about the accuracy of a model and texture mapping. The result showed that the proposed method produced the higher model accuracy.

Tracking and Interaction Based on Hybrid Sensing for Virtual Environments

  • Jo, Dongsik;Kim, Yongwan;Cho, Eunji;Kim, Daehwan;Kim, Ki-Hong;Lee, Gil-Haeng
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.356-359
    • /
    • 2013
  • We present a method for tracking and interaction based on hybrid sensing for virtual environments. The proposed method is applied to motion tracking of whole areas, including the user's occlusion space, for a high-precision interaction. For real-time motion tracking surrounding a user, we estimate each joint position in the human body using a combination of a depth sensor and a wand-type physical user interface, which is necessary to convert gyroscope and acceleration values into positional data. Additionally, we construct virtual contents and evaluate the validity of results related to hybrid sensing-based whole-body tracking of human motion methods used to compensate for the occluded areas.

A Research on Dynamic Tension Response of Model Mooring Chain by Forced Oscillation Test (강제동요 시험을 이용한 모형 계류삭의 동적 응답 연구)

  • Kim, Hyun-Joe;Hong, Sa-Young;Hong, Sup;Cho, Suk-Kyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.134-141
    • /
    • 2002
  • A series of forced oscillation test on model mooring chain was carried out to investigate dynamic tension characteristics. The model test was conducted at two different water depth to gather basic data for 'truncated mooring test' and 'hybrid mooring test'. The truncated and hybrid mooring test are highly recommended to overcome the limitation of water depth in model test recently. The resultant tension RAO gives good possibility of approximation of dynamic tension by equivalent weight adjustment for the ratio of water depth in different water depth. Because the hybrid mooring test is the adequate combination of model test and simulation, accurate simulation model on mooring system is essential. The simulation results show good agreement with model test results.

  • PDF

Effects of laser and arc power on the penetration depth in $CO_2$ laser-MIG hybrid welding ($CO_2$ 레이저-MIG 하이브리드 용접부 용입깊이에 미치는 레이저 및 아크 출력의 영향)

  • 홍승갑;이종봉
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.81-83
    • /
    • 2003
  • The potential advantages of the hybrid welding process are improved weld penetration, enhanced gap tolerance, control of weld metal composition, and improved weld quality in comparison to laser or arc welding. Especially, the deep penetration of hybrid welding is very attractive in welding of thick plates. In this study, therefore, the influence of arc power in hybrid welding on detailed bead dimensions at different laser power levels was investigated.

  • PDF