• Title/Summary/Keyword: depth radiation

Search Result 638, Processing Time 0.037 seconds

Relativistic Radiation Hydrodynamics of Spherical Accretion

  • PARK MYEONG-GU
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.305-307
    • /
    • 2001
  • Radiation hydrodynamics in high. velocity or high optical-depth flow should be treated under rigorous relativistic formalism. Relativistic radiation hydrodynamic moment equations are summarized, and its application to the near-critical accretion onto neutron star is discussed. The relativistic effects can dominate the dynamics of the flow even when the gravity is weak and the velocity is small. First order equations fail to describe the intricate relativistic effects correctly.

  • PDF

Monte Carlo Algorithm-Based Dosimetric Comparison between Commissioning Beam Data across Two Elekta Linear Accelerators with AgilityTM MLC System

  • Geum Bong Yu;Chang Heon Choi;Jung-in Kim;Jin Dong Cho;Euntaek Yoon;Hyung Jin Choun;Jihye Choi;Soyeon Kim;Yongsik Kim;Do Hoon Oh;Hwajung Lee;Lee Yoo;Minsoo Chun
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.150-157
    • /
    • 2022
  • Purpose: Elekta synergy® was commissioned in the Seoul National University Veterinary Medical Teaching Hospital. Recently, Chung-Ang University Gwang Myeong Hospital commissioned Elekta Versa HDTM. The beam characteristics of both machines are similar because of the same AgilityTM MLC Model. We compared measured beam data calculated using the Elekta treatment planning system, Monaco®, for each institute. Methods: Beam of the commissioning Elekta linear accelerator were measured in two independent institutes. After installing the beam model based on the measured beam data into the Monaco®, Monte Carlo (MC) simulation data were generated, mimicking the beam data in a virtual water phantom. Measured beam data were compared with the calculated data, and their similarity was quantitatively evaluated by the gamma analysis. Results: We compared the percent depth dose (PDD) and off-axis profiles of 6 MV photon and 6 MeV electron beams with MC calculation. With a 3%/3 mm gamma criterion, the photon PDD and profiles showed 100% gamma passing rates except for one inplane profile at 10 cm depth from VMTH. Gamma analysis of the measured photon beam off-axis profiles between the two institutes showed 100% agreement. The electron beams also indicated 100% agreement in PDD distributions. However, the gamma passing rates of the off-axis profiles were 91%-100% with a 3%/3 mm gamma criterion. Conclusions: The beam and their comparison with MC calculation for each institute showed good performance. Although the measuring tools were orthogonal, no significant difference was found.

Measurements of relative depth dose rates for a brachytherapy Ir-192 sourceusing an organic scintillator fiber-optic radiation sensor (유기 섬광체-광섬유 방사선 센서를 이용한 근접 방사선원 Ir-192의 상대 깊이 선량율 측정)

  • Shin, Sang-Hun;Jang, Kyoung-Won;Cho, Dong-Hyun;Yoo, Wook-Jae;Seo, Jeong-Ki;Lee, Bong-Soo;Moon, Joo-Hyun;Kim, Sin;Park, Byung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.462-469
    • /
    • 2008
  • In this study, we have fabricated a fiber-optic radiation sensor using an organic scintillator and plastic optical fiber for brachytherapy dosimetry. Also, we have measured relative depth dose rates of Ir-192 source using a fiber-optic sensor and compared them with the results obtained using a conventional EBT film. Cerenkov lights which can be a noise in measuring scintillating light with a fiber-optic sensor are measured and eliminated by using of a background optical fiber. It is expected that a fiber-optic radiation sensor can be used in brachytherapy dosimetry due to its advantages such as a low cost, simple usage and a small volume.

The Dose Distribution of Arc therapy for High Energy Electron (고에너지 전자선 진자조사에 의한 선량분포)

  • Chu, S.S.;Kim, G.E.;Suh, C.O.;Park, C.Y.
    • Radiation Oncology Journal
    • /
    • v.1 no.1
    • /
    • pp.29-36
    • /
    • 1983
  • The treatment of tumors along curved surfaces with stationary electron beams using cone collimation may lead to non-uniform dose distributions due to a varying air gap between the cone surface and patient. For large tumors, more than one port may have to be used in irradiation of the chest wall, often leading to regions of high or low dose at the junction of the adjacent ports. Electron-beam arc therapy may elimination many of these fixed port problems. When treating breast tumors with electrons, the energy of the internal mammary port is usually higher than that of the chest wall port. Bolus is used to increase the skin dose or limit the range of the electrons. We invertiaged the effect of various arc beam parameters in the isodose distributions, and combined into a single arc port for adjacent fixed ports of different electron beam eneries. The higher fixed port energy would be used as the arc beam energy while the beam penetration in the lower energy region would be controlled by a proper thickness of bolus. We obtained the results of following: 1. It is more uniform dose distribution of electron to use rotation than stationary irradiation. 2. Increasing isocenter depth on arc irradiation, increased depth of maximum dose, reduction in surface dose and an increasing penetration of the linear portion of the curve. 3. The deeper penetration of the depth dose curve and higher X-ray background for the smaller field sized. 4. If the isocenter depth increase, the field effect is small. 5. The decreasing arc beam penetration with decreasing isocenter depth and the isocenter depth effect appears at a greater depth as the energy increases. 6. The addition of bolus produces a shift in the penetration that is the same for all depths leaving the shape of the curves unchanged. 7. Lead strips 5 mm thick were placed at both ends of the arc to produce a rapid dose drop-off.

  • PDF

Estimation of Thermal Humidity Inside Concrete and Prediction of Carbonation Depth (콘크리트 내부 온습도 추정 및 탄산화 깊이 예측)

  • Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.197-198
    • /
    • 2021
  • The temperature and humidity inside concrete affects the depth of carbonation. In this study, the temperature and humidity inside concrete were predicted by the numerical method under the boundary conditions of ambient temperature, humidity, solar radiation, and wind. Using the results of the thermal humidity analysis, diffusion of carbon dioxide and the reaction of cement hydration products were calculated for carbonation depth.

  • PDF

Environment Simulation and Effect Estimation of Space Radiation for COMS Communication Payload (통신해양기상위성 통신 탑재체의 우주 방사선 환경 모사 및 영향 추정)

  • Kim, Seong-Jun;U, Hyeong-Je;Seon, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.76-83
    • /
    • 2006
  • Space radiation environment for COMS is simulated by NASA AP8/AE8, JPL91 and NRL CREME models, respectively for trapped particle, solar proton and cosmic-ray. The radiation effects on electronic devices in communication payload are also estimated by using simulation results. Dose-depth curve and LET spectrum are calculated for estimating total ionizing dose(TID) effect and single event effect(SEE) respectively. Spherical sector method is applied to dose estimation at each position in the units of communication payload to consider shielding effect of platform and housing. Total ionizing dose at each position varies by 8 times through shielding effect under the same external space radiation environment.

Transmission of Solar Light according the Relative CDOM Concentration of the Sea-ice-covered Pacific Arctic Ocean (태평양 북극 결빙 해역 내 유색 용존 유기물 CDOM 분포에 따른 태양광 투과 비교)

  • Kang, Sung-Ho;Kim, Hyun-Choel;Ha, Sun-Yong
    • Ocean and Polar Research
    • /
    • v.40 no.4
    • /
    • pp.281-288
    • /
    • 2018
  • The transmission of solar light according to the distribution of chromophoric dissolved organic matter (CDOM) was measured in the Pacific Arctic Ocean. The Research Vessel Araon visited the ice-covered East Siberian and Chukchi Seas in August 2016. In the Arctic, solar [ultraviolet-A (UV-A), ultraviolet-B (UV-B), and photosynthetically active radiation (PAR)] radiation reaching the surface of the ocean is primarily protected by the distribution of sea ice. The transmission of solar light in the ocean is controlled by sea ice and dissolved organic matter, such as CDOM. The concentration of CDOM is the major factor controlling the penetration depth of UV radiation into the ocean. The relative CDOM concentration of surface sea water was higher in the East Siberian Sea than in the Chukchi Sea. Due to the distribution of CDOM, the penetration depth of solar light in the East Siberian Sea (UV-B, $9{\pm}2m$; UV-A, $13{\pm}2m$; PAR, $36{\pm}4m$) was lower than in the Chukchi Sea (UV-B, $15{\pm}3m$; UV-A, $22{\pm}3m$; PAR, $49{\pm}3m$). Accelerated global warming and the rapid decrease of sea ice in the Arctic have resulted in marine organisms being exposed to increased harmful UV radiation. With changes in sea ice covered areas and concentrations of dissolved organic matter in the Arctic Ocean, marine ecosystems that consist of a variety of species from primary producers to high-trophic-level organisms will be directly or indirectly affected by solar UV radiation.

Study on Physical Penumbra of Radiation Therapy (방사선치료시 물리학적 반음영의 검토)

  • Kim, Young-Bum;Whang, Woong-Ku;Kim, You-Hyun
    • Journal of radiological science and technology
    • /
    • v.16 no.2
    • /
    • pp.81-86
    • /
    • 1993
  • Proper evaluation about the penumbra is very important to improve the efficacy of radiation theraphy. There are two kinds of physical penumbra, geometric penumbra and transmission penumbra. In this study, we evaluated the variation of physical penumbra according to the varing energy level, changing the field size and depth. Physical penumbra width was decreased as the source size decreased, and as the SDD increased, but the consideration about the scatter radiation and mechanical stability is an important factor. For the two adjacent beams, upper collimator should be used and especially for Co-60 unit, it is efficient to use the extended collimator.

  • PDF

Numerical Study on Floating-Body Motions in Finite Depth

  • Kim, Tae-Young;Kim, Yong-Hwan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.176-184
    • /
    • 2012
  • Installing floating structures in a coastal area requires careful observation of the finite-depth effect. In this paper, a Rankine panel method that includes the finite-depth effect is developed in the time domain. The bottom boundary condition is satisfied by directly distributing Rankine panels on the bottom surface. A stepwise analysis is performed for the radiation diffraction problems and consequently freely-floating motion responses over different water depths. The hydrodynamic properties of two test hulls, a Series 60 and a floating barge, are compared to the results from another computation program for validation purposes. The results for both hulls change remarkably as the water depth becomes shallower. The important features of the results are addressed and the effects of a finite depth are discussed.

The Use of Lens Shielding Device(L.S.D.) for a Conjunctival Lymphoma

  • Cho Hyun Sang;Ju Sang Gyu;Song Ki Won;Park Young Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.9 no.1
    • /
    • pp.40-45
    • /
    • 1997
  • When therapeutic irradiation is indicated for the orbital tumors, the greatest concern is the risk of radiation-induced cataract. Conjunctival lymphoma is one of the good examples. We would like to report the procedure of the lens shielding device(L.S.D) and the result of irradiated dose to the lens. L.S.D. consistes of two parts : load alloy to attenuate electron beam, and dental acryl which completely covers the lead alloy to avoid discomfort of cornea from contacting directly with cerrobend and side scattering by cerrobend. And for easy location and removal, side bars were made on each side. Radiation doses were meaured with TLD(TLD 3500 Hawshaw). Markus chamber in a polystyrene phantom. The phantom was irradiated with 9MeV electron beams from Clinac 2100C with $6{\times}6cm$ electron cone. The relative dose at 6mm depth where the lens is located was $4.2\%$ with TLD and $5.1\%$ with Markus chamber clinically when 2600 cGy are irradiated to the eyeball, the mapinary dose to the lens will be 109 cGy or 132 cGy, which will significently reduce the cataract.

  • PDF