• Title/Summary/Keyword: depth effect

Search Result 4,318, Processing Time 0.033 seconds

Distribution of Air-Water Two-Phase Flow in a Header of Aluminum Flat Tube Evaporator (알루미늄 평판관 증발기 헤더 내 공기-물 2상류 분지 실험)

  • Kim Nae-Hyun;Shin Tae-Ryong;Sim Yong-Sup
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.55-65
    • /
    • 2006
  • The air and water flow distribution are experimentally studied for a round header - flat tube geometry simulating a parallel flow heat exchanger. The number of branch flat tube is thirty. The effects of tube outlet direction, tube protrusion depth as well as mass flux, and quality are investigated. The flow at the header inlet is identified as annular. For the downward flow configuration, the water flow distribution is significantly affected by the tube protrusion depth. For flush-mounted configuration, most of the water flows through frontal part of the header. As the protrusion depth increases, more water is forced to the rear part of the header. The effect of mass flux or quality is qualitatively the same as that of the protrusion depth. Increase of the mass flux or quality forces the water to rear part of the header. For the upward flow configuration, however, most of the water flows through rear part of the header. The protrusion depth, mass flux, or quality does not significantly alter the flow pattern. Possible explanations are provided based on the flow visualization results. Negligible difference on the water flow distribution was observed between the parallel and the reverse flow configuration.

Effect of Double Circular Pit Depth and Stress on Far and Near-side Magnetic Flux Leakage at Ferromagnetic Pipeline (강자성 배관 외.내부 면의 이중 원형 결함의 깊이와 응력이 누설자속에 미치는 영향)

  • Ryu, K.S.;Park, Y.T.;Son, D.;Atherton, D.L.;Clapham, L.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.2
    • /
    • pp.76-81
    • /
    • 2003
  • Non-linear anisotropic materials were used to simulate the effects of tensile stress in 3D finite element analysis (FEA). FEA was used to calculate the effects of far and near-side pit depth and tensile stress on magnetic flux leakage (MFL) signals. The axial and radial MFL signals were depended on far and near-side double circular pit depth and on the stress, but the circumferential MFL signal was not depended on them. The axial and radial MFL signals increased with greater pit depth and applied stress, but the circumferential MFL signal was scarcely changed.

A study on the design of a path tracker and depth controller for autonomous underwater vehicles (무인 수중운동체의 경로추적기와 심도제어기 설계 연구)

  • Yang, Seung-Yun;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.45-55
    • /
    • 1998
  • In this paper, a robust path tracker and depth controller of Autonomous Underwater Vehicle based on sliding mode control is presented. We have also designed augmented equivalent control inputs by analyzing the sliding mode with the reaching mode. This can enhance the reaching rate, and improve chattering problems, that is, noise caused by the control plane actuator of the vehicle, which is one of the problems that occur when sliding mode control is used. Also to resolve the steady state error generated in the path tracker under current effect, a modified sliding plane is constructed. Also a redesigned sliding plane and control input using transformation matrix is proposed to do easy design of MIMO depth controller. For state variables that cannot be measured directly, reduced order sliding mode control is used to design an observer. The performance of designed path tracker and depth controller is investigated by computer simulation. The results show that the proposed control system has robust performance to parameter variation, modelling error and disturbance.

  • PDF

Quantification of $Cu(In_xGa_{1-x})Se_2$ Solar Cell by SIMS

  • Jang, Jong-Shik;Hwang, Hye-Hyen;Kang, Hee-Jae;Min, Hyung-Sik;Han, Myung-Sub;Suh, Jung-Ki;Cho, Kyung-Haeng;Chung, Yong-Duck;Kim, Je-Ha;Kim, Kyung-Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.275-275
    • /
    • 2012
  • The relative composition of $Cu(InGa)Se_2$ solar cells is one of the most important measurement issues. However, quantitative analysis of multi-component alloy films is difficult by surface analysis methods due to severe matrix effect. In this study, quantitative depth profiling analysis of CIGS films was investigated by secondary ion mass spectrometry (SIMS). The compositions were measured by SIMS using the alloy reference relative sensitivity factors derived from the certified compositions and the total counting numbers of each element. The compositions measured by SIMS were linearly proportional to those by inductively coupled plasma-mass spectrometry (ICP-MS) using isotope dilution method. In this study, the quantification measured by ICP-MS method is compared with the composition calculated by SIMS depth profiles with AR-RSFs obtained from the reference. The SIMS depth profile of CIGS thin films according to the manufacturing condition was converted into compositional depth profile.

  • PDF

Joint Characteristics of Spot Friction Stir Welded A 5052 Alloy Sheet (마찰교반 점용접한 A 5052 알루미늄 합금판재의 접합부 특성)

  • Yeon, Yun-Mo;Lee, Won-Bae;Lee, Chang-Yong;Jung, Seung-Boo;Song, Keun
    • Journal of Welding and Joining
    • /
    • v.24 no.1
    • /
    • pp.71-76
    • /
    • 2006
  • In this study, the microstructure and mechanical properties of spot friction stir welded A 5052 alloy were investigated. Especially, the effect of insertion depth of welding tool on microstructural changes and mechanical properties was investigated in order to obtain the optimum spot friction stir welding condition. The lap shear load of spot friction stir welded A 5052 alloy plates showed lower value at the shallowest insertion depth and increased with tool insertion depth. At 1.6mm, the maximum value of 3.35 kN was obtained, and then dropped to lower load when the insertion depth was deeper. Spot friction stir welded joints showed shear fracture mode at shallower insertion depths and fracture mode changed to plug fracture mode as the insertion depth was deeper.

Investigation of the Effect of Water Depths on Two-dimensional Hydrodynamic Coefficients for Twin-hull Sections (쌍동체(雙胴體)에 작용(作用)하는 2차원 유체력계수(流體力係數)의 수심(水深)의 변화(變化)에 따른 영향(影響)에 관한 고찰(考察))

  • K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.4
    • /
    • pp.39-45
    • /
    • 1982
  • A floating rig, which has been used to develop the ocean resources has a common characteristics with the catamaran ship that it is composed of the two simple hulls. So the motion responses of the floating rig can be predicted theoretically with the aid of the strip method as those of the catamaran. And for the strip method, the two-dimensional hydrodynamic coefficients are the most important inputs to predict the results accurately. In this report, a theoretical method is proposed for calculating two-dimensional hydrodynamic forces and moments acting upon arbitrary shaped twin-hull cylinders, which are forced to make a heaving, swaying and rolling oscillation about their mean position on the free surface of a finite depth water. The theoretical results by making use of the singularity distribution method are presented. The accuracy of the coefficients was confirmed to be reasonable by the comparison with the Ohkusu's results for two circular cylinders in an infinite depth water. The depth effects on two-dimensional hydrodynamic coefficients for two circular cylinders are also checked. In some range of wave numbers, large differences in the behavior of hydrodynamic coefficients between for a finite depth and for an infinite depth are shown.

  • PDF

Characteristics of Rhizome Rot incidence of Platycodon grandiflorus by Ridge width and Depth and Cultivation Period in the Seeding Place (이랑폭과 고랑깊이 및 재배년수에 따른 도라지뿌리썩음병 발생양상)

  • Kim, Ho-Joung;Cho, Young-Son
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.4
    • /
    • pp.246-250
    • /
    • 2011
  • This study was carried out to investigate the characteristics of Rhizome rot incidence of Platycodon grandiflorus by cultivation period and ridge width and furrow depth. The three types of ridge width 0.8, 1.0, and 1.2 m and several levels of furrow depth and 6 levels cultivation period. This experiment was done in farmer's farm and the treatments were also classified in the same spot. In this investigation, ridge width, soil water content, soil hardness, and cultivation period were positively related with Rhizome rot incidence, however, furrow depth was negatively related with that. So this experiment could draw a conclusion : excess water damage and soil hardness could directly or indirectly effect on the Rhizome rot incidence, so cultivation method should be developed such as making underground ditch or cultivation in well draining soil for escaping excess waster damage.

Fatigue Safety Evaluation of the Half-Depth Precast Deck with RC Rib Panel (리브 형상을 갖는 반단면 프리캐스트 바닥판의 피로 안전성 평가)

  • Hwang, Hoon Hee
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.103-110
    • /
    • 2019
  • In order to reduce the accidents occurring at construction sites, it is necessary to approach with harmonious measures considering various aspects such as systems, training, facilities, and protection equipments. Suggestion of safe construction method can be a good alternative. In the previous study, the half-depth precast deck with RC rib panel was proposed as an alternative method for safe bridge deck construction, and the performance required by the design code was verified through a four-point bending test. But the actual bridge deck is subjected to the repetitive action of the wheel load rather than the bending condition due to the four-point load. In this study, fatigue test was performed by repeating the wheel load $2{\times}10^6$ cycles to verify the safety of the half-depth precast deck with RC rib panel under actual conditions. As a result, fatigue effect due to repetition of wheel load was not significant in terms of serviceability such as crack width and deflection. In the residual strength test conducted after the fatigue test, the half-depth precast deck with RC rib panel failed by punching shear which is typical failure mode of bridge decks and the residual strength was similar to the punching strength of the RC and PSC bridge decks in spite of the fatigue effects.

An experimental study on the roundness effect for the cutting conditions in a cylinder cutting by end mill (엔드밀에 의한 원통 가공시 절삭조건에 따른 진원도의 실험적 연구)

  • 박희견
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.52-60
    • /
    • 1999
  • In this study the effect of roundness error with respect to the cutting conditions using the external cylindrical work piece by end mill cutting in a machining center was studied. the end mill used in this study is HSS coated with Ti-N which is of Ø 12-4 flutes. The material of workpiece is SM20C and cutting oil is used as a cooling flued The cutting experiments were carried out for the several cutting conditions(depth of cut height of end mill feed rate revolution per minute and cutting direction) and their roundness effects were compared using the least squares circle measuring method. The experimental results are summarized as follows : 1) The cutting depth is dominant for the roundness of a cylindrical work piece and the cutting speed must be determined precisely when the cutting depth is large 2) When the cutting direction in circular manufacturing is the same with the spindle rotation i.e up-cutting condition the surface roundness is also improved.

  • PDF

Effect of Metal Removal and Initial Residual Stress on Contact Fatigue Life (초기 잔류응력과 접촉표면 제거가 접촉피로수명에 미치는 영향)

  • Hur Hun-Mu;Goo Byeong-Choon;Choi Jae-Boong;Kim Young-Jin;Seo Jung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.341-349
    • /
    • 2005
  • Damage often occurs on the surface of railway wheel by wheel-rail contact fatigue. It should be removed before reaching wheel failure, because wheel failure can cause derailment with loss of life and property. The increase or decrease of the contact fatigue life by the metal removal of the contact surface were shown by many researchers, but it has not explained precisely why fatigue life increases or decreases. In this study, the effect of metal removal depth on the contact fatigue life for railway wheel has been evaluated by applying finite element analysis. It has been revealed that the residual stress and the plastic flow are the main factors determining the fatigue life. The railway wheel has the initial residual stress formed during the manufacturing process, and the residual stress is changed by thermal stress induced by braking. It has been found that the initial residual stress determines the amount of metal removal depth. Also, the effects of the initial residual stress and metal removal on the contact fatigue lift has been estimated, and an equation is proposed to decide the optimal metal removal depth for maximizing the contact fatigue life.