• Title/Summary/Keyword: depth controller

Search Result 148, Processing Time 0.026 seconds

$H_\infty$ Depth Controller Design for Underwater Vehicles (수중운동체의 $H_\infty$ 심도제어기 설계)

  • 이만형;정금영;김인수;주효남;양승윤
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.345-355
    • /
    • 2000
  • In this paper, the depth controller of an underwater vehicle based on an $H_\infty$ servo control is designed for the depth keeping of the underwater vehicle under wave disturbances. The depth controller is designed in the form of the $H_\infty$ servo controller, which has robust tracking property, and an $H_\infty$ servo problem is considered for the $H_\infty$ servo controller design. In order to solve the $H_\infty$ servo problem for the underwater vehicle, this problem is modified as an $H_\infty$ control problem for the generalized plant that includes a reference input mode, and a suboptimal solution that satisfies a given performance criteria is calculated with the LMI (Linear Matrix Inequality) approach. The $H_\infty$ servo controller is designed to have robust stability about the perturbation of the parameters of the underwater vehicle and the robust tracking property of the underwater vehicle depth under wave force and moment disturbances. The performance, robustness about the uncertainties, and depth tracking property, of the designed depth controller is evaluated by computer simulation, and finally these simulation results show the usefulness and applicability of the proposed $H_\infty$ depth control system.

  • PDF

Design of Adaptive Fuzzy Sliding Mode Controller based on Fuzzy Basis Function Expansion for UFV Depth Control

  • Kim Hyun-Sik;Shin Yong-Ku
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.217-224
    • /
    • 2005
  • Generally, the underwater flight vehicle (UFV) depth control system operates with the following problems: it is a multi-input multi-output (MIMO) system because the UFV contains both pitch and depth angle variables as well as multiple control planes, it requires robustness because of the possibility that it may encounter uncertainties such as parameter variations and disturbances, it requires a continuous control input because the system that has reduced power consumption and acoustic noise is more practical, and further, it has the speed dependency of controller parameters because the control forces of control planes depend on the operating speed. To solve these problems, an adaptive fuzzy sliding mode controller (AFSMC), which is based on the decomposition method using expert knowledge in the UFV depth control and utilizes a fuzzy basis function expansion (FBFE) and a proportional integral augmented sliding signal, is proposed. To verify the performance of the AFSMC, UFV depth control is performed. Simulation results show that the AFSMC solves all problems experienced in the UFV depth control system online.

PDA/FLC Depth control system design for underwater vehicles (수중운동체를 위한 PDA/FLC 심도 제어시스템 설계)

  • Kim, J.S.;Park, J.L.;Kim, S.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.25-32
    • /
    • 1994
  • A nonlinear control algorithm for the depth control of underwater vehicles is presented. In order to consider the deadzone effect of the flow control valve, a nonlinear fuzzy logic controller (FLC) is synthesized and combined with a linear proportional-derivative-acceleration (PDA) controller, which is called the PDA/FLC controller. And to show the effectiveness of the PDA/FLC control system, it is compared with the linear PDA control system through computer simulation. It is found that the PDA/FLC control system is suitable one to maintain the desirable depth of underwater vehicles with deadzone.

  • PDF

Design of Fuzzy PD Depth Controller for an AUV

  • Loc, Mai Ba;Choi, Hyeung-Sik;Kim, Joon-Young;Kim, Yong-Hwan;Murakami, Ri-Ichi
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.1
    • /
    • pp.16-21
    • /
    • 2013
  • This paper presents a design of fuzzy PD depth controller for the autonomous underwater vehicle entitled KAUV-1. The vehicle is shaped like a torpedo with light weight and small size and used for marine exploration and monitoring. The KAUV-1 has a unique ducted propeller located at aft end with yawing actuation acting as a rudder. For depth control, the KAUV-1 uses a mass shifter mechanism to change its center of gravity, consequently, can control pitch angle and depth of the vehicle. A design of classical PD depth controller for the KAUV-1 was presented and analyzed. However, it has inherent drawback of gains, which is their values are fixed. Meanwhile, in different operation modes, vehicle dynamics might have different effects on the behavior of the vehicle. In this reason, control gains need to be appropriately changed according to vehicle operating states for better performance. This paper presents a self-tuning gain for depth controller using the fuzzy logic method which is based on the classical PD controller. The self-tuning gains are outputs of fuzzy logic blocks. The performance of the self-tuning gain controller is simulated using Matlab/Simulink and is compared with that of the classical PD controller.

PDA/FLC depth control of underwater vehicles with deadzone (사역대를 갖는 수중운동체의 PDA/FLC 심도제어)

  • 김종식;정재호;최중락
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1080-1085
    • /
    • 1993
  • A nonlinear control algorithm for the depth control of underwater vehicles is presented. In order to consider the deadzone effect of the flow control valve, a nonlinear fuzzy logic controller (FLC) is synthesized and combined with a linear proportional-derivative-acceleration (PDA) controller, which is called, the PDA/FLC controller. And, to show the effectiveness of the PDA/FLC control system, it is compared with the linear PDA control system through computer simulation. It is found that the PDA/FLC control scheme is a suitable one to maintain the desirable depth of underwater vehicles with deadzone.

  • PDF

Design of auto-depth control system for low speed submersible vehicle (미속 수중함의 자동심도 제어장치 설계 연구)

  • 조현진;최중락;김흥열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.776-779
    • /
    • 1992
  • This paper describes the auto-depth control system with depth control tank for low speed submersible vehicle that can be used for both near surface and deeply submerged keeping operations. The PDA control algorithm is used to design controller and adaptive notch filter is designed to eliminate the dominant frequency of seaway. The computer simulations demonstrate the excellent depth keeping performance of the controller under seaway effects.

  • PDF

A study on the design of a path tracker and depth controller for autonomous underwater vehicles (무인 수중운동체의 경로추적기와 심도제어기 설계 연구)

  • Yang, Seung-Yun;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.45-55
    • /
    • 1998
  • In this paper, a robust path tracker and depth controller of Autonomous Underwater Vehicle based on sliding mode control is presented. We have also designed augmented equivalent control inputs by analyzing the sliding mode with the reaching mode. This can enhance the reaching rate, and improve chattering problems, that is, noise caused by the control plane actuator of the vehicle, which is one of the problems that occur when sliding mode control is used. Also to resolve the steady state error generated in the path tracker under current effect, a modified sliding plane is constructed. Also a redesigned sliding plane and control input using transformation matrix is proposed to do easy design of MIMO depth controller. For state variables that cannot be measured directly, reduced order sliding mode control is used to design an observer. The performance of designed path tracker and depth controller is investigated by computer simulation. The results show that the proposed control system has robust performance to parameter variation, modelling error and disturbance.

  • PDF

A fuzzy sliding mode controller design for the hovering system of underwater vehicles (수중운동체의 호버링시스템을 위한 퍼지 슬라이딩 모드 제어기 설계)

  • Kim, Jong-Sik;Kim, Sung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.1
    • /
    • pp.25-32
    • /
    • 1995
  • Nonlinear depth control algorithms for the hovering system of underwater vehicles are presented. In this paper, a nonlinear effect in heave motion for underwater vehicles, a deadzone effect of the flow control valve in the hovering tank and an impact disturbance are considered. In this situation, in order to choose a desirable controller, sliding mode controller and fuzzy sliding mode controller are designed and compared. The computer simulation results show that the fuzzy sliding mode control system is more suitable in order to maintain a desirable depth of an underwater vehicle with a deadzone and impact disturbance.

  • PDF

Depth Control of Underwater Flight Vehicle Using Fuzzy Sliding Mode Controller and Neural Network Interpolator (퍼지 슬라이딩 모드 제어기 및 신경망 보간기를 이용한 Underwater Flight Vehicle의 심도 제어)

  • Kim, Hyun-Sik;Park, Jin-Hyun;Choi, Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.8
    • /
    • pp.367-375
    • /
    • 2001
  • In Underwater Flight Vehicle depth control system, the followings must be required. First, it needs robust performance which can get over modeling error, parameter variation and disturbance. Second, it needs accurate performance which have small overshoot phenomenon and steady state error to avoid colliding with ground surface or obstacles. Third, it needs continuous control input to reduce the acoustic noise and propulsion energy consumption. Finally, it needs interpolation method which can sole the speed dependency problem of controller parameters. To solve these problems, we propose a depth control method using Fuzzy Sliding Mode Controller with feedforward control-plane bias term and Neural Network Interpolator. Simulation results show the proposed method has robust and accurate control performance by the continuous control input and has no speed dependency problem.

  • PDF

Depth Control of Autonomous Underwater Vehicle Using Robust Tracking Control (강인추적 제어를 이용한 자율 무인 잠수정의 심도제어)

  • Chai, Chang-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.66-72
    • /
    • 2021
  • Since the behavior of an autonomous underwater vehicle (AUV) is influenced by disturbances and moments that are not accurately known, the depth control law of AUVs must have the ability to track the input signal and to reject disturbances simultaneously. Here, we proposed robust tracking control for controlling the depth of an AUV. An augmented closed-loop system is represented by an error dynamic equation, and we can easily show the asymptotic stability of the overall system by using a Lyapunov function. The robust tracking controller is consisted of the internal model of the command signal and a state feedback controller, and it has the ability to track the input signal and reject disturbances. The closed-loop control system is robust to parameter uncertainties. Simulation results showed the control performance of the robust tracking controller to be better than that of a P + PD controller.