• Title/Summary/Keyword: deposits

Search Result 1,977, Processing Time 0.028 seconds

K - Ar Ages of Mineral Deposits in the Gyeonggi Massif (한반도중부지역(韓半島中部地域)의 광상생성기(鑛床生成期)와 생성구(生成區) -경기육괴내(京畿陸塊內)의 광상생성연령(鑛床生成年齡)-)

  • Park, Hee-In;Chang, Ho Wan;Jin, Myung Shik
    • Economic and Environmental Geology
    • /
    • v.21 no.4
    • /
    • pp.349-358
    • /
    • 1988
  • K-Ar ages were determined on gangue and wall rock alteration minerals from twenty metallic mineral deposits in the Gyeonggi Massif. Beryl deposits give the age of 185 Ma, whereas tungsten - molybdenum deposits reveal two different age groups such as 172~156 Ma and 91~86Ma. Lead - zinc deposits and gold - silver deposits yield the ages of 160 Ma and 71~197 Ma, respectively. Mineralization ages for each genetic type of deposits in the Gyeonggi Massif can be summarized as follows; pegmatite deposits, 185 Ma; skarn deposits, 156~160 Ma; hydrothermal deposits, 71~197 Ma. Present results together with data previously reported reveal that rare earths, tungsten-molybdenum, base and precious metal deposits in the Gyeonggi Massif were formed in Jurassic and Cretaceous time with a genetic relationship to the Daebo and Bulguksa felsic igneous activity.

  • PDF

Effect of Trace Metallic Additives of Mg-Fe-X on Microstructure and Properties of Zn Electrodeposits (아연도금층의 조직 및 물성에 미치는 미량금속원소(Mg-Fe-X)의 복합첨가의 영향(II))

  • 예길촌;김대영;안덕수
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.99-109
    • /
    • 2004
  • The effect of trace metallic additives on microstructure, glossiness and hardness of Zinc electrodeposits was investigated by using sulfate bath and flow cell system. The preferred orientation of Zn deposits with Mg-Fe additives was (10$\ell$)+(002) mixed texture, while that of Zn deposits with Mg-Fe-Cr additives was ( $10\ell$). The preferred orientation of Zn deposits with Mg-Fe-X(X:Ni,Co) additives changed from ($10\ell$)+(002) to ($10\ell$) with increasing Mg additive from 5 to 10 g/$\ell$. The surface morphology of the Zinc deposits was closely related to the preferred orientation of the deposits. The glossiness of Zn deposits with Mg-Fe additives was similar to that of pure Zn deposit. The glossiness of Zn deposits with Mg-Fe-X(X:Ni,Cr) additives was lower than that of Zn deposits with Mg-Fe additives, while that of Zn deposits with Mg-Fe-Co additives was higher than that of Zn-Mg-Fe deposits. The hardness of Zn deposits with Mg-Fe-X(Ni,Co,Cr) increased with current density and amount of Mg additive. Hardness of Zn deposits was decreased and increased in comparison with Zn-Mg-Fe deposits for Mg-Fe-Co and Mg-Fe-Cr additives, respectively.

K-Ar Ages of Mineral Deposits in the Taebaeg Mountain District (태백산지역내(太白山地域內) 광상(鑛床)의 생성연령(生成年齡))

  • Park, Hee-In;Chang, Ho Wan;Jin, Myung Shik
    • Economic and Environmental Geology
    • /
    • v.21 no.1
    • /
    • pp.57-67
    • /
    • 1988
  • K-Ar age determinations were carried out on muscovite and other gangue and wallrock alteration minerals from seventeen mineral deposits in the Taebaeg mountain district. Tin deposits give the ages of 1792 Ma and 158-127 Ma, whereas tungsten-molybdenum deposits give the ages of 1520-1480 Ma. 173-168 Ma and 84-81 Ma. Polymetallic mineral deposits. gold-silver deposits and sericite deposits yield the ages of 98-52 Ma. 93-75 Ma, and 202 Ma, respectively. Mineralization ages for each genetic type of deposits in this district can be summarized as follows; pegmatite deposits. 1792 Ma ; pegmatite-hydrothermal deposits. 1526-1480 Ma ; greisen deposits. 157-127 Ma ; skarn deposits, 98-73 Ma and 52 Ma ; hydrothermal deposits, 202-168 Ma and 93-76 Ma. Present results together with data available in the literature reveal that five distinct mineralization ages can be recognized in this district ; (1) 1792 Ma, (2) 1526-1480 Ma, (3) 202-127 Ma. (4) 98-73 Ma, (5) 52 Ma, These age data are similar to the reported radiometric age data of igneous rocks in this district except for two ages such as 2154-2084 Ma and 880-738 Ma.

  • PDF

Gold-Silver Mineralization of the Au-Ag Deposits at Yeongdong District, Chung-cheongbuk-Do (충청북도(忠淸北道) 영동지역(永同地域) 금은광상(金銀鑛床)의 금은광화작용(金銀鑛化作用)에 관한 연구(硏究))

  • Choi, Seon Gyu;Chi, Se Jung;Park, Sung Won
    • Economic and Environmental Geology
    • /
    • v.21 no.4
    • /
    • pp.367-380
    • /
    • 1988
  • Most of the gold (-silver) vein deposits at Yeongdong District are mainly distributed in the precambrian metamorphic rocks. Based on the Ag/Au total production and ore grade ratios, the chemical composition of electrum and the associated sulfides, the gold(-silver) deposits at Yeongdong District may be classified into 4 classes: pyrrhotite - type gold deposits( I), pyrite - type gold deposits (IT A; massive vein), pyrite - type gold deposits (II B; nonmassive vein) and argentite - type gold - silver deposits(III). The chemical study on electrum(including native gold) revealed that Au content (2.8 to 92.4 atomic%) of electrums varies very widely for different classes of deposits. The Au content of electrum associated with pyrrhotite (Class I), ranging from 47.1 to 92.4 atomic% Au, is clearly higher than that associated with pyrite (Classes IIA, IIB and III). In contrast, classes I, II, and III deposits do not show clear differences in Au content of electrum. In general, pyrrhotite - type gold deposits(I) are characterized by features such as simply massive vein morphology, low values in the Ag/Au total production and ore grade ratios, the absence or rarity of silver - bearing minerals except electrum, and distinctively simple mineralogy. Although the geological and mineralogical features and vein morphology of pyrite - type gold deposits(IIA)are very similar to those of pyrrhotite - type gold deposits (I), Class II A deposits reveal significant differences in the associated iron sulfide (i. e. pyrite) with electrum and Au content of electrum. The Ag/Au total production and ore grade ratios from Class II A deposits are relatively slightly higher than those from Class I deposits. Pyrite - type gold deposits(II B) and argentite - type gold - silver deposits (III) have many common features; complex vein morphology, medium to high values in the Ag/Au total production and ore grade ratios and the associated iron sulfide (i. e. pyrite). In contrast to Class II B deposits, Class III deposits have significantly high Ag/Au total production and ore grade ratios. It indicates distinct difference in the abundance of silver minerals (i. e. native silver and argentite). The fluid inclusion analyses and mineralogical data of electrum tarnish method indicate that the gold mineralization of Classes I and II A deposits was deposited at temperatures between $230^{\circ}$ and $370^{\circ}C$, whereas the gold (-silver) mineralization of Classes ITB and ill formed from the temperature range of $150^{\circ}-290^{\circ}C$. Therefore, Classes I and IT A deposits have been formed at higher temperature condition and/or deeper positions than Classes IIB and III.

  • PDF

The Effect of Additives on the Current Efficiency and the Microstructure of Trivalent Cr Electrodeposits Plated in Flow Cell System (고속도금된 3가 크롬도금의 전류효율 및 조직특성에 미치는 첨가제의 영향)

  • 예길촌;서경훈
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.92-98
    • /
    • 2004
  • The current efficiency and the microstructure of the trivalent Cr deposits plated in flow cell system were investigated according to additives in sulfate bath and current density. The current efficiency of the deposits plated in the formic acid complexed bath was noticeably higher than that of the deposits from glycine complexed bath. The current efficiency of the deposits from the complexed baths with boric acid buffer increased linearly with current density in the range of 60-100 A/dm$^2$, while that of the deposits from the baths with both Al sulfate and mixed buffers increased parabolically with current density. The nodular crystallite size of the deposits increased with current density, and the deposits plated in low current density region had relatively smooth surface appearance with fine grains. The structure of the deposits from the complexed baths with boric acid buffer changed from amorphous structure to crystalline one with strong (110)peak with increasing current density. The deposits from the baths with both Al sulfate and mixed buffers had generally amorphous structure.

How Investment Deposits at Islamic and Conventional Banks Effect Earnings Per Share?

  • MASWADEH, Sanaa Nazami
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.669-677
    • /
    • 2020
  • The study aims to compare the effects of employing investment deposits (joint and specified investment deposits) in Islamic banks, and investment deposits (term deposits and deposits with notification) at conventional banks, on shareholders' profitability, represented by the earnings per share (EPS), in light of operational profits as a controlling variable. Data related to the study variables was collected from the annual financial reports published by the study sample banks, during the period (2009-2018). The study relies on multiple regression to test the hypotheses of the study. The high adjusted R2 to explain the change in EPS for Islamic banks model as compared to conventional banks, is a result of the high difference between investment deposits (specified and joint) at Jordanian Islamic banks and investment deposits (term deposits and deposits with notification) at Jordanian conventional banks. The study found that it is important for the managements of Islamic banks to adopt a uniform method to combine speculative funds, in order to develop and improve shareholders' profitability. The study recommended Islamic banks to follow practical, methodological and transparent approaches to calculate the rates of Murabaha profit margins between shareholders and depositors, while also taking into consideration some of the issues which could be harmful for the competition between Islamic and conventional banks.

General Remarks of Geneses of Tungsten Ore Deposits Based on Tungsten Deposits of China (중국의 중석광상을 근거로한 중석광상 성인 총론)

  • Moon, Kun Joo
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.287-303
    • /
    • 1995
  • Tungsten ore deposits in China show clearly their relationship between granitoids and orebodies. All kinds of different tungsten ore deposits, having the largest ore reserves in the world, occur in China. Major tungsten deposits in 1950'years were locally confined in three provinces such as Jiangxi, Hunan and Guangdong. However, the major tungsten ore deposits are replaced by new tungsten deposits such as Sandahozhuang, Xingluokeng, Shizhuan and Daminghsan deposit which may be larger than the previous major deposits. Tungsten ore deposits of China exhibit obviously the granitoid was the ore-bringer to form tungsten ore deposits. The wolframite-bearing quarz veins in China indicate that tungsten mineralization took place by crystallization of wolframite preferentially unless $Ca^{{+}{+}}$ was introduced from outside into the magma-origin-fluid, since it is understood that the scheelite in the Sangdong ore deposit was preferentially precipitated, because of chemical affinity, from the tungsten fluid in which Fe and Ca ions were as sufficient as to form magnetite, wolframite and scheelite. Tungsten deposits in the world are divided into two systems; W-Mo-Sn system and W-Mo system. Most of tungsten deposits in China dated to about 196-116 Ma belong to the W-Mo-Sn system, while late Cretaceous tungsten deposits such as the Sangdong deposit in Korea belongs to the W-Mo system. The genetic order of tin-tungsten-molybdenum mineralization observed in the Moping tungsten mine in China and the Sangdong in Korea may be attributed to volatile pressures in the same magma chamber. It is assumed from ages of tungsten mineralizations that ore elements such as tin, tungsten and molybdenum might be generated periodically by nuclear fission and fusion in a part of the mantle and the element generated was introduced into the magma chamber. The periodical generation of elements had determined association, depletion and enrichment of tin and molybdenum in tungsten mineralization and it results in little association of cassiterite in tungsten deposit of late Cretaceous ages. Different mechanism of emplacement of the ore-bearing magma has brought various genetic types of tungsten deposits as shown in China and the world.

  • PDF

Effect of Trace Metallic Additives of Al-Fe-X on Microstructure and Properties of Zn Electrodeposits (아연도금층의 조직 및 물성에 미치는 미량금속원소(Al-Fe-X)의 복합첨가의 영향(I))

  • 예길촌;김대영;서경훈;안덕수
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.444-454
    • /
    • 2003
  • The effect of trace metallic additives of Al-Fe-X on microstructure, glossiness and hardness of Zn electrodeposits was investigated by using sulfate bath. The preferred orientation of Zn deposits with Al-Fe additives was (10 l)(l:3,4,2), while that of Zn deposits with Al-Fe-X(Ni,Co) additives was either (002) or (002)+(103)ㆍ(104) mixed orientation. The preferred orientation of Zn deposits with Al-Fe-Cr additives changed from (002)+(10 l) to (10 l) orientation with increasing amount of Al additive. The surface morphology of the Zn deposits was closely related to the preferred orientation of the deposits. The glossiness of Zn deposits with Al-Fe additives increased in comparison with that of pure Zn deposit. That of the Zn deposits with Al-Fe-X additives was related to the morphology of the deposits and changed according to type of additives. The hardness of Zn deposits with Al-Fe-X(Ni,Co,Cr) additives was noticeably higher than that of Zn deposits with Al-Fe additives.

Composition and microstructure of Silver-Tin alloy deposits from prophosphate bath (피로인산염욕을 사용한 은-주석 합금도금층의 조성 및 현미경 조직)

  • 예길촌;김용웅;김진수
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.3
    • /
    • pp.143-148
    • /
    • 1993
  • Composition and microstructures of Silver-Tin alloy deposits from a pyrophosphate bath were studied under the D.C. electrolysis conditions. Cathode current efficiency and throwing power of alloy deposits de-creased with increasing current density. Tin content of Ag-Sn alloy deposits decreased noticeably with the cur-rent density and with decreasing pH. The preferred orientation of the deposits tended to change in sequence of (110)longrightarrow(111)longrightarrow(100) texture with increasing the cathode overpotential. The surface structure of alloy deposits showed the smooth surface structure with fine crystallites.

  • PDF

Composition, preferred orientation and magnetic properties of Ni-Fe-Co alloy electrodeposits (Ni-Fe-Co 박막도금층의 조성, 우선배향 및 자기적 성질)

  • 예길촌;김선윤;문근호;김용웅
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.6
    • /
    • pp.352-360
    • /
    • 1995
  • The effect of electrolysis conditions on the composition, the magnetic properties and the preferred orientation of Ni-Fe-Co alloy deposits was investigated using the sulfate-chloride bath paddle agitated. Cathode current efficiency increases with the current density, showing the different tendency of the variation from that of the Ni-Fe electrodeposits. The Co content of the deposits decreases with increasing current density, while the content of Ni and Fe is shown to be minimum or maximum at 3A/$dm^2$ respectively. The Ni/Fe ratio of the alloy deposits is lower than that of Ni-Fe deposits. The coercive force($H_c$) of the deposits increases with the Co content in deposit, showing the relatively low value in the range of 1.8~5.0Wt.% Co. The anisotropy field ($H_k$) of the deposits is higher than that of Ni-Fe alloy deposits, The preferred orientation of the deposits is generally (200), but the orientation factor(R) changes with both the increase of current density and the magnetic field applied during deposition.

  • PDF