• Title/Summary/Keyword: deposited sediment

Search Result 170, Processing Time 0.024 seconds

The evaluation of pollution level and release characteristics by inner productivity in the sediment of lake (호소 퇴적물 내부생산성 오염도 영향 평가 및 용출특성에 관한 연구)

  • Lee, Sang Eun;Choi, I Song;Lee, Sang Keun;Lee, In Ho;Oh, Jong Min
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.81-91
    • /
    • 2012
  • In this study, it is grasped the status of nutrients through an investigation of release characteristics and physicochemical properties of sediments on reservoir. And then the effect of sediments is evaluated on the water quality in reservoir. In the results of physicochemical analysis, the pollution level of midstream is the highest, which shows the traits that the water is more deeper and takes place a deposition consistently. Then, the pollution level of upstream is higher than downstream's because inflow has influence on the upstream directly. The downstream is located near tidal gate so that the soil particles can be moved easily and are difficult to be deposited due to the distribution of seawater by control of tidal gate. Therefore, the downstream is showed the lowest pollution level than the others. Also, the concentration of SOD(Sediment Oxygen Demand) in the upstream which is influenced on the effect of inflow is highest than the others. When it analyzes under anaerobic and aerobic condition to understand the release characteristic of sediment, it shows that the release rate is low or negative under the aerobic condition. Whereas the release rate is usually positive under the unaerobic condition relatively. According to these results, it is necessary to maintain the proper environmental factors of water body for decreasing the release rate of sediment. Because the release rate is changeable under the different condition of water body. Therefore, proper strategies are required for increasing the self-purification of water as well as keeping the aerobic condition of sediment and managing a sediment layer directly to control the inner-pollution by the sediment of reservoir.

Morphological Features of Bedforms and their Changes due to Marine Sand Mining in Southern Gyeonggi Bay (경기만 남부에 발달된 해저지형의 형태적 특징 및 해사채취에 의한 변화)

  • Kum, Byung-Cheol;Shin, Dong-Hyeok;Jung, Seom-Kyu;Jang, Seok;Jang, Nam-Do;Oh, Jae-Kyung
    • Ocean and Polar Research
    • /
    • v.32 no.4
    • /
    • pp.337-350
    • /
    • 2010
  • This study conducted sedimentological and geophysical surveys for 3 years (2006-2008) in southern Gyeonggi Bay, Korea to elucidate temporal changes in subaqueous dune morphology on a sand ridge trending northeast to southwest that has been excavated by marine sand mining. The sand ridge (~20 m in height, ~2 km in width and 3~4 km in length) has a steep slope on the NW side and a gentle slope on the SE side, creating an asymmetric profile. Large (10~100 m in length) and very large (>100 m in length) dunes occurring on the SE side of the ridge show a northeastward asymmetrical shape, whereas dunes on the NW side destroyed by marine sand mining display a southwestward asymmetry. The comparison between Flemming (1988)'s correlation and the height-length correlation of this study indicates that tidal current and availability of sand sediment are major controlling factors to the development and maintenance of dunes. Depth and sedimentary characteristics (grain size) are not likely to be major controlling factors, but indirectly influence dune growth by hydrological and sedimentary processes. The length and the height of dunes decrease toward the southeastern trough away from the crest of the ridge. These features result from the decrease of tidal current and sediment availability. The length and the height of dunes on the southeast side decrease gradually over time. This is a result of the interaction between tidal current and the decrease in sediment availability due to sediment extraction by marine sand mining. Marine sand mining has destroyed the dunes directly, causing irregular shapes of shorter length and lower height. The coarse fraction of suspended sediments is transported and deposited very close to the sand pit. By contrast, relatively fine sediments are transported by the tidal current and deposited over a wide range by the settling-lag effect, resulting in a decrease of sediment grain size in the area where suspended sediments are deposited. In addition, marine sand mining, decreases the height of dunes. Therefore, morphological and sedimentological characteristics of dunes around the sand pits will be significantly changed by future sand mining activities.

Reduction Method of Shoaling of Navigation Channel Using Composite Channel Slope (복단면 항로를 이용한 항로매몰 저감공법)

  • 배기성;김규한;백승화
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.233-240
    • /
    • 1995
  • A large part of shoaling of navigation channel surrounded by fine sand is caused by suspended sediment in non-equilibrium state. We develop a numerical model for predicting shoaling of navigation channel where concentration of suspended sediment in such state is accurately simulated. In this study, effects of channel geometry on the shoaling of the channel are investigated numerically. A composite slope of navigation channel is also proposed to reduce non-equilibrium property of suspended sediment. It is found that the composite slope can effectively reduce non-equilibrium property of suspended sediment and the amount of sediment deposited in the main channel.

  • PDF

Simulating Depositional Changes in River and It's Prediction (그래픽 모사기법을 이용한 하천 변천의 재현과 예측)

  • Lee, Young-Hoon
    • Economic and Environmental Geology
    • /
    • v.27 no.6
    • /
    • pp.579-592
    • /
    • 1994
  • A case study is presented where a fluvial system is modeled in three dimensions and compared to data gathered from a study of the Arkansas River. The data is unique in that it documents changes that affected a straight channel that was excavated within the river by the U.S. Army Corps of Engineers. Excavation plan maps and sequential aerial photographs show that the channel underwent massive deposition and channel migration as it returned to a more natural, meandering path. These records illustrate that stability of fluvial system can be disrupted either by catastrophic events such as floods or by subtle events such as the altering of a stream's equilibrium base level or sediment load. SEDSIM, Stanford's Sedimentary Basin Simulation Model, is modified and used to model the Arkansas River and the geologic processes that changed in response to changing hydraulic and geologic parameters resulting from the excavation of the channel. Geologic parameters such as fluid and sediment discharge, velocity, transport capacity, and sediment load are input into the model. These parameters regulate the frequency distribution and sizes of sediment grains that are eroded, transported and deposited. The experiments compare favorably with field data, recreating similar patterns of fluid flow and sedimentation. Therefore, simulations provide insight for understanding and spatial distribution of sediment bodies in fluvial deposits and the internal sedimentary structure of fluvial reservoirs. These techniques of graphic simulation can be contributed to support the development of the new design criteria compatible with natural stream processes, espacially drainage problem to minimize environmental disruption.

  • PDF

A Study of Siltation in a Small Harbor (소규모 항만의 퇴사기구에 관한 연구)

  • Yoon, Seong-Jin;Kim, Kyu-Han
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.11 s.172
    • /
    • pp.961-968
    • /
    • 2006
  • Since a small harbor is often located near surf zone areas which have great influences of sediment transport, there is a great possibility that the sediment will be deposited inside of the harbor. The sediment transport occurring around the harbor entrance can't be explained by the wind wave and wave induced current. In this study, it was investigated the mechanism of the entrainment of sediment into a small harbor with permeable breakwater using hydraulic experiments in 3D wave basin. It is found out that the significant sediment entrainment produced when the mode of oscillation in the harbor became the 1st mode. In the case where the incident wave period was shorter than the period that caused higher mode oscillation in harbor, only a little amount of sediment entrainment took place. The vortex shedding from the top of secondary breakwater played very important roll in the entrainment of sediment into the harbor. It is also found that the small jetty attached at the top of secondary breakwater could effectively prevent the entrainment of sediment into the harbor.

Improvement of river environment in the downstream reaches of dams (댐하류의 하천환경 개선)

  • Ozawa, Takashi
    • Proceedings of the Korean Society of Environment and Ecology Conference
    • /
    • 2003.10a
    • /
    • pp.1-21
    • /
    • 2003
  • I introduce the Flexible Dam Operation (FDO) and some of sediment control techniques In dams which are implemented as trials to avoid or reduce environmental impact of dams on the downstream reaches. The FDO is a dam management method to improve river environment in the downstream reaches by means of the flushing flow, the maintenance flow and so on utilizing a vacant portion of capacity for flood control without interrupting prime flood control function during the rainy/typhoon season. It Is suggested by the guideline of the FDO that EDO should be implemented regularly after the trial for about three years. The basic conception of the FDO is described here. The example of excavation of deposited sediments in check dams and placement of sand ana gravel immediately downstream of the dams and the example of coordinated sediment flushing are described as some of sediment control techniques in dams. Now they are at the stage of experiment and trial. Therefore, it is important to increase examples and establish the technical methodology and the environmental evaluation method for them.

  • PDF

The Performances of Sediment Trap for Reducing Water Pollutants and Soil Loss from Rainfall Runoff in Cropland (농경지 토양유실 및 수질오염물질 유출에 대한 침사구 조성 효과)

  • Park, Se-In;Park, Hyun-Jin;Kim, Han-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.307-313
    • /
    • 2019
  • BACKGROUND: An intensive farming system may be of the most important source for agricultural non-point source (NPS) pollution, which is a major concern for agricultural water management in South Korea. Various management practices have therefore been applied to reduce NPS loads from upland fields. This study presents performances of sediment trap for reducing NPS and soil loss from rainfall runoff in cropland. METHODS AND RESULTS: In 2018 and 2019, three sediment traps (L1.5 m × W1.0 m × D0.5 m = 0.75 ㎥) and their controls were established in the end of sloped (ca. 3%) upland field planted with maize crops. Over the seasons, runoff water was monitored, collected, and analyzed at every runoff. Soils deposited in sediment traps were collected and weighed at the season end. Sediment traps reduced runoff amount (p<0.05) and NPS concentrations, though the decreased NPS concentrations were not always statistically significant. In addition, sediment traps had a significant prevention effect on soil loss from rainfall runoff in a sloped cropland. CONCLUSION: The results suggest that the sediment trap could be a powerful and the best management practice to reduce NPS pollution and soil loss in a sloped upland field.

Experimental Investigation of Local Half-cone Scouring Against Dam under the Effect of Localized Vibrations in the Sediment Layers

  • Dodaran, Asgar Ahadpour;Park, Sang Kil;Mardashti, Asadollah;Noshadi, Mehrzad;Afsari, Mohammad
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.107-113
    • /
    • 2013
  • Most natural river reach are approximately balanced with respect to sediment inflow and outflow. Dam construction dramatically alters this balance, creating an impounded river reach characterized by extremely low flow velocities and efficient sediment trapping. The impounded reach will accumulate sediment and lose storage capacity until a balance is again achieved, which would normally occur after the impoundment has become "filled up" with sediment and can no longer provide water storage and other benefits. This paper aims to investigate the sediment removal process in dam reservoir using simultaneously pressure flushing operation and vibrator machine. The main objective of this study is to identify the effect of vibrator in flushing cone dimensions. To achieve the objectives of present study, laboratory test have conducted under different hydraulic conditions such as two bottom outlets with diameter equal to 2" and 3", five discharges 0.23, 0.53, 1.21, 1.53 and 2.1 lit/s and only one water depth above the center of bottom outlets. Using the vibrator machine mounted into the reservoir and close to the bottom outlet, different frequency e.g. 20, 35 and 50 HZ, have been introduced to the deposited sediment at the vicinity of outlet. The results indicate that the volume and width of flushing cone are strongly affected by frequency of vibrations. The results indicate that the volume and width of flushing cone are strongly affected by frequency of vibrations.

Vertical Distribution of Persistent Heavy metals in Core Sediments from Upo Wetland (자연습지 우포늪 퇴적물의 연도별 잔류성 중금속 축적도)

  • Lee, Chan Won;Boo, Min Ho;Jeon, Hong Pyo;Lim, Kyung Won;Kim, Ki Ho
    • Journal of Wetlands Research
    • /
    • v.10 no.3
    • /
    • pp.27-35
    • /
    • 2008
  • Sediment cores were obtained from Upo and Mokpo in Upo Wetland and core samples were divided by depth into 20 ~ 21 subsamples. The heavy metal concentrations of Fe, Mn, Zn, AS, Cu, Cd, Ni, Pb, and Cr in the sediments of each depth were determined by ICP-MS. The texture of sediemnts from Upo Wetland appeared to be clayey silt with average grain size of $7.52{\sim}11.15{\mu}m$ for physical properties. It was found to have a clear tendency of depth profile with respect to TOC and ignition loss. Organics were stabilized in the range of 0.5 ~ 0.7 % TOC and 8 ~ 9 % ignition loss in 30 years, whereas, the surficial sediments have the highest concentrations of about 3.0 % of TOC and 13 ~ 15 % ignition loss. Those are much higher than the values of the main stream, the Nakdong River, which reflects the deposit of biodegradable organics from plants and other lifes. The vertical distribution of heavy metals in two sediment cores was investigated to elucidate historical trends of heavy metals deposited into Upo wetland. The depth profile concentrations of each heavy metal were compared and discussed with the Concensus-Based Sediment Quality Guidelines for freshwater ecosystems. All the Cd data for the vertical distribution in the sediments were detected above PEC value for Cd, which predict harmful effects on sediment-dwelling organisms expected to occur frequently. The concentrations of Zn, Cu, and Cr in all sediment samples for depth profile were detected below the TEC values, which provided a basis predicting the absence of toxicity by Zn, Cu, and Cr.

  • PDF

Numerical Modeling for Sedimentation Characteristics of the Lower Nakong River and Sediment Dredging Effects at the Nakdong River Estuary Barrage (낙동강 하류의 유사특성과 낙동강하구둑 준설효과에 관한 수치모의 연구)

  • Ji, Un;Julien, Pierre Y.;Park, Sangkil;Kim, Byungdal
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.405-411
    • /
    • 2008
  • The Nakdong River Estuary Barrage (NREB) was constructed in 1987 to prevent saltwater intrusion and to provide the sustainable water supply in the upstream channel. Sediment dredging has been conducted to eliminate deposited sediments in the approached upstream channel of the NREB. Fluvial changes and sedimentation problems have been continued due to urbanization and development in the watershed as well as construction of the NREB. However, the sufficient field monitoring and researches for sedimentation characteristics and bed changes have not been performed after construction of the NREB. Therefore, bed elevation changes and seasonal sediment concentration distribution were analyzed using the quasi-steady state model with historical field data in this study. The water surface elevation changes with and without sediment dredging operation were calculated using the developed quasi-steady state model and finally the sediment dredging effects were evaluated.