• Title/Summary/Keyword: dental pulp

Search Result 544, Processing Time 0.023 seconds

Can different agents reduce the damage caused by bleaching gel to pulp tissue? A systematic review of basic research

  • Leticia Aparecida Silva Batista;Alexandre Henrique dos Reis-Prado;Hebertt Gonzaga dos Santos Chaves;Lara Cancella de Arantes;Luis Fernando Santos Alves Morgan;Carolina Bosso Andre;Thais Yumi Suzuki;Francine Benetti
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.4
    • /
    • pp.39.1-39.23
    • /
    • 2023
  • Objectives: This study aimed to investigate the effectiveness of different topical/systemic agents in reducing the damage caused by bleaching gel to pulp tissue or cells. Materials and Methods: Electronic searches were performed in July 2023. In vivo and in vitro studies evaluating the effects of different topical or systemic agents on pulp inflammation or cytotoxicity after exposure to bleaching agents were included. The risk of bias was assessed. Results: Out of 1,112 articles, 27 were included. Nine animal studies evaluated remineralizing/anti-inflammatories agents in rat molars subjected to bleaching with 35%-38% hydrogen peroxide (HP). Five of these studies demonstrated a significant reduction in inflammation caused by HP when combined with bioglass or MI Paste Plus (GC America), or following KF-desensitizing or Otosporin treatment (n = 3). However, orally administered drugs did not reduce pulp inflammation (n = 4). Cytotoxicity (n = 17) was primarily assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on human dental pulp cells and mouse dental papilla Cell-23 cells. Certain substances, including sodium ascorbate, butein, manganese chloride, and peroxidase, were found to reduce cytotoxicity, particularly when applied prior to bleaching. The risk of bias was high in animal studies and low in laboratory studies. Conclusions: Few in vivo studies have evaluated agents to reduce the damage caused by bleaching gel to pulp tissue. Within the limitations of these studies, it was found that topical agents were effective in reducing pulp inflammation in animals and cytotoxicity. Further analyses with human pulp are required to substantiate these findings.

Expression of DSPP mRNA During Differentiation of Human Dental Pulp-derived Cells (HDPC) and Transplantation of HDPC Using Alginate Scaffold

  • Aikawa, Fumiko;Nakatsuka, Michiko;Kumabe, Shunji;Jue, Seong-Suk;Hayashi, Hiroyuki;Shin, Je-Won;Iwai, Yasutomo
    • International Journal of Oral Biology
    • /
    • v.31 no.3
    • /
    • pp.73-79
    • /
    • 2006
  • Tissue stem cells are used for the regenerative medicine. In previous study we observed hard tissue formation of human dental pulp-derived cells using alginate scaffold. In this study, we explore the ability to differentiate of the 13th passage cells with glycerol 2-phosphate disodium salt hydrate (${\beta}-GP$) which accelerate calcification. Reverse transcriptase Polymerase Chain Reaction (RT-PCR), transplants using alginate scaffold and histological examination were performed. We observed the expression of DSPP mRNA on day 10 cultured cells with ${\beta}-GP$. In conclusion, the 13th passage cells still have an ability to differentiate into odontoblast-like cells and alginate supports the differentiation of cultured cells in the transplants.

Pressure Root Resorption of the Second Molar Caused by Third Molar Impaction: A Case Report of Severely Resorbed Root with Vital Pulp

  • Kang, Sumi;Kim, Euiseong
    • Journal of Korean Dental Science
    • /
    • v.9 no.2
    • /
    • pp.63-68
    • /
    • 2016
  • Pressure root resorption can be observed during the eruption of permanent dentition, especially of the maxillary canines (affecting lateral incisors) and mandibular third molars (affecting mandibular second molars). Since the cause of root resorption of the adjacent affected teeth is evident, treatment simply involves extraction of the impacted tooth. However, there have been few reports on the prognosis of the remaining resorbed tooth, as dentists often choose to extract them when damage due to root resorption is observed. We report a case involving a tooth that was severely resorbed due to pressure from an adjacent impacted tooth. After extraction of the impacted tooth, the remaining tooth retained vital pulp and survived as a functional tooth.

Amputation level for hard tissue formation in pulp with tetracalcium / dicalcium phosphate compound.

  • Yoshikawa, M.;Toda, T.
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.566.1-566
    • /
    • 2001
  • The most desirable healing process for endodontic therapy is apical closure by hard tissue such as dentine or cementum. Then, we estimated hard tissue conductivity of tetracalcium phosphate (4CP)/dicalcium phosphate (2CP) compound using mandibular first molars of SD rats. Residual pulp responses to the calcium phosphate compound were examined at several amputation levels of pulp. 2CP was purchased and passed through a $32-\mu\textrm{m}$ sieve. 4CP was obtained from a stoichiometric mixture of 2CP and calcium carbonate (Mol ratio: Ca/P=2.0) by the dry synthetic method at 1, 400(C for 8 hours.(omitted)

  • PDF