• Title/Summary/Keyword: dental hard tissue

Search Result 233, Processing Time 0.025 seconds

Reconstruction of Disharmonious Upper Anterior Dentition by Implant Supported Fixed Prosthesis (임플란트 지지 고정성 보철물로 상악 전치부를 수복한 증례)

  • Oh, Sang-Chun;Chee, Young-Deok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.2
    • /
    • pp.183-192
    • /
    • 2008
  • Modern dental reconstructions do not only aim at restoring the patient's mastication, but rather at improving general well-being and quality of life, especially in terms of esthetics. The media, the internet, advertising, and many other facts of society contribute to an increased cosmetic awareness. A 35-year-old male patient presented with as follows: 1) the porcelain fracture of ceramo-metal restoration on #11 and #23, 2) the inclination of incisal plane to horizontal reference plane, 3) the dental midline deviation to facial midline, and 4) the lack of symmetry on upper anterior dentition. The patient requested an aesthetic improvement using fixed prosthodontics including implant-supported restorations. In the upper anterior region, one of the goals of the conventional as well as implant prosthesis is to achieve restorations with the dental attractiveness and beauty in the respect of dental, dentofacial, and facial compositions. This case report presents geometrically improvement of dental esthetics using conventional and implant prosthesis with soft and hard tissue augmentation.

A STUDY ON CRANIOFACIAL GROWTH ANALYSIS OF KOREAN CHILDREN BY THE FINITE ELEMENT METHOD (한국아동의 악안면성장에 관한 유한요소법적 연구)

  • Tahk, Seon-Gun
    • The korean journal of orthodontics
    • /
    • v.18 no.2
    • /
    • pp.343-366
    • /
    • 1988
  • Craniofacial complex is influenced by numerical skeletal elements. Though the analysis of growth change has been done by various analytical methods, it was dependent on any method of registration and superimposition, based on reference plane and reference point. However, the craniofacial growth is composed of a number of local growth elements. Therefore, it will be necessary to use a clinically useful method for estimating craniofacial skeletal growth independently. The author analysed longitudinal cephalometric roentgenogram of 15 Korean males and 15 Korean females aged from 6 to 12 years by the finite element method and results were as follows : 1. The finite element method for craniofacial skeletal complex and soft tissue made it possible to analyze the independent local growth. 2. Regression equations from the value of each strain will make it possible to predict the craniofacial growth. 3. The growth of anterior cranial base was different from that of other facial bone. 4. The growth of posterior cranial base influenced the growth of upper pharyngeal region, midfacial region, maxilla and posterior region of mandible. 5. The growth of maxillary complex was vertical rather than horizontal. 6. The growth direction of ramus, mandibular body, alveolar bone was various. 7. The relation between hard tissue and soft tissue by finite element method was variant.

  • PDF

Forced orthodontic eruption for augmentation of soft tissue prior to implant placement (임플란트 식립 전 연조직 증대를 위한 교정적 정출술)

  • Park, Chul-Wan
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.29 no.1
    • /
    • pp.54-61
    • /
    • 2020
  • Forced orthodontic eruption(FOE) is a non-surgical treatment approach that allows augmenting both soft- and hard-tissue profiles of potential implant sites, by forced orthodontic extrusion of "hopeless" teeth and their periodontal apparatus. By stretching the gingival and periodontal ligament fibers during extrusion, tension is imparted to the entire alveolar socket, stimulating osseous apposition at the alveolar crest. FOE increases the width of the attached gingiva, and the mucogingival junction remains stable when the gingival margin migrates coronally. Based on these effects, FOE of non-restorable teeth prior to implant placement is a viable alternative to conventional surgical augmentative procedures in implant site development. The aim of this case report is to describes coronal soft-tissue augmentation around fractured teeth, which was achieved by FOE before implant placement.

An alternative treatment option for a bony defect from large odontoma using recycled demineralization at chairside

  • Lee, JuHyon;Lee, Eun-Young;Park, Eun-Jin;Kim, Eun-Suk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.41 no.2
    • /
    • pp.109-115
    • /
    • 2015
  • Odontoma is the most common odontogenic benign tumor, and the treatment of choice is generally surgical removal. After excision, bone grafts may be necessary depending on the need for further treatment, or the size and location of the odontoma. Although the osteogenic capacity of a demineralized tooth was verified as early as 1967 by Urist and many other investigators, the cumbersome procedure, including a long demineralization time, may be less than comfortable for clinicians. A modified ultrasonic technology, with periodic negative pressure and temperature control, facilitated rapid and aseptic preparation of demineralized teeth for bone grafts. This approach reduces the demineralization time dramatically (${\leq}80$ minutes), so that the graft material can be prepared chairside on the same day as the extraction. The purpose of this article is to describe two cases of large compound odonotomas used as graft material prepared chairside for enucleation-induced bony defects. These two clinical cases showed favorable wound healing without complications, and good bony support for future dental implants or orthodontic treatment. Finally, this report will suggest the possibility of recycling the benign pathologic hard tissue as an alternative treatment option for conventional bone grafts in clinics.

Clinical and radiographic assessment of narrow-diameter and regular-diameter implants in the anterior and posterior jaw: 2 to 6 years of follow-up

  • Alrabiah, Mohammed;Deeb, Modhi Al;Alsahhaf, Abdulaziz;AlFawaz, Yasser F.;Al-Aali, Khulud Abdulrahman;Vohra, Fahim;Abduljabbar, Tariq
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.2
    • /
    • pp.97-105
    • /
    • 2020
  • Purpose: The present retrospective clinical study aimed to evaluate and compare the clinical and radiographic parameters, complications, and satisfaction in patients who received fixed prostheses supported by narrow-diameter implants (NDIs) in the anterior and posterior jaw. Methods: Patients aged ≥30 years who had NDI-supported fixed prostheses in the anterior or posterior region of either jaw for at least 2 years were included. Complications such as chipping of the crown; loosening or fracture of the screw, crown abutment, or implant; and loss of retention were recorded. Clinical peri-implant outcomes and crestal bone loss (CBL) were measured. A questionnaire was used to record responses regarding the aesthetics and function of the fixed restorations. Analysis of variance was used to assess the significance of between-group mean comparisons. The log-rank test was performed to analyze the influence of location and prosthesis type on technical complications. Results: Seventy-one patients (mean age: 39.6 years) provided informed consent with a mean follow-up duration of 53 months. Only bleeding on probing showed a statistically significant difference between NDIs in the anterior and posterior regions. The complication rate for NDIs in the posterior region was significantly higher than that for NDIs in the anterior region (P=0.041). For NDIs, CBL was significantly higher around splinted crowns than single crowns (P=0.022). Overall mean patient satisfaction was 10.34±3.65 on a visual analogue scale. Conclusions: NDIs in the anterior and posterior jaws functioned equally well in terms of periimplant soft and hard tissue health and offered acceptable patient satisfaction and reasonable complication rates.

NFI-C Is Required for Epiphyseal Chondrocyte Proliferation during Postnatal Cartilage Development

  • Lee, Dong-Seol;Roh, Song Yi;Choi, Hojae;Park, Joo-Cheol
    • Molecules and Cells
    • /
    • v.43 no.8
    • /
    • pp.739-748
    • /
    • 2020
  • Stringent regulation of the chondrocyte cell cycle is required for endochondral bone formation. During the longitudinal growth of long bones, mesenchymal stem cells condense and differentiate into chondrocytes. Epiphyseal chondrocytes sequentially differentiate to form growth-plate cartilage, which is subsequently replaced with bone. Although the importance of nuclear factor 1C (Nfic) in hard tissue formation has been extensively studied, knowledge regarding its biological roles and molecular mechanisms in this process remains insufficient. Herein, we demonstrated that Nfic deficiency affects femoral growth-plate formation. Chondrocyte proliferation was downregulated and the number of apoptotic cell was increased in the growth plates of Nfic-/- mice. Further, the expression of the cell cycle inhibitor p21 was upregulated in the primary chondrocytes of Nfic-/- mice, whereas that of cyclin D1 was downregulated. Our findings suggest that Nfic may contribute to postnatal chondrocyte proliferation by inhibiting p21 expression and by increasing the stability of cyclin D1 protein.

HEALING PROCESS OF DENTAL HARD TISSUES AND PULP TISSUE AFTER LASER IRRADIATION (레이저에 의해 손상된 치아경조직 및 치수조직의 치유과정에 대한 연구)

  • Kim, Chul-Soon;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.20-42
    • /
    • 1998
  • The present study was designed to understand the basic principles of the laser system and to assess the optimal coditions of the Nd:YAG laser irradiation system in order to expand the use of the laser system in the dental field. The laser system used in this study was a pulsed-wave output type and the power level is 9 watts. The incisors of developing rats were irradiated with the laser system explained above for 0.5, 1, and 2 seconds giving energy density 71, 167, and 215 J/$cm^2$ respectively. The rats were sacrificed just after irradiation or 10 minutes and 10 days after irradiation. The specimens were examined with the stereoscope, light microscope and transmission electron microscope. The results are as follows: 1. The tissue removal efficiency (depth of the cavity formed) is increased with the energy density after Nd:YAG laser irradiation. 2. The carbonized area is increased with the energy density. Cracks and melted appearance are seen in all kinds of the energy densities. 3. The lacunae in the damaged alveolar bone by the laser irradiation were empty, while those in the newly formed bone were occupied with the osteocytes. The damaged alveolar bone was repaired by the osteoblasts and macrophages on the periphery of the bone matrix. 4. The damaged enamel was replaced by the loose connective tissues showing many kinds of cells. The ameloblasts were differntiated on the replaced loose connective tissue. 5. The damaged dentin was repaired by the irregular dentin formed by the odontoblasts differentiated from the mesenchymal cells migrated from the pulp core.

  • PDF

Contralateral recurrence of necrotizing sialometaplasia of the hard palate after five months: a case report

  • Jeong, Chan-Woo;Youn, Taegyun;Kim, Hyun Sil;Park, Kwang-Ho;Huh, Jong-Ki
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.41 no.6
    • /
    • pp.338-341
    • /
    • 2015
  • Necrotizing sialometaplasia usually heals within 4 to 10 weeks with conservative treatment, and rarely recurs. When necrotizing sialometaplasia is present on the hard palate it may occur unilaterally or bilaterally. In this case, necrotizing ulceration occurred on the left hard palate of a 36-year-old woman after root canal treatment of the upper left first premolar under local anesthesia. After only saline irrigation the defect of the lesion completely healed and filled with soft tissue. After 5 months, however, a similar focal necrosis was found on the contralateral hard palate without any dental treatment having been performed on that side and progressed in similar fashion as the former lesion. We conducted an incisional biopsy and obtained a final pathological diagnosis for the palatal mass of necrotizing sialometaplasia. At the 3-year follow-up, the patient's oral mucosa of the hard palate was normal, without any signs and symptoms of the condition. We report a case of a second occurrence of necrotizing sialometaplasia on the contralateral side from the first, with a time lapse between the first and second occurrence.

Morphology of Bone-like Apatite Formation on Sr and Si-doped Hydroxyapatite Surface of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.79-79
    • /
    • 2017
  • Metallic biomaterials have been mainly used for the fabrication of medical devices for the replacement of hard tissue such as artificial hip joints, bone plates, and dental implants. Because they are very reliable on the viewpoint of mechanical performance. This trend is expected to continue. Especially, Ti and Ti alloys are bioinert. So, they do not chemically bond to the bone, whereas they physically bond with bone tissue. For their poor surface biocompatibility, the surface of Ti alloys has to be modified to improve the surface osteoinductivity. Recently, ceramic-like coatings on titanium, produced by plasma electrolytic oxidation (PEO), have been developed with calciumand phosphorus-enriched surfaces. A lso included the influences of coatings, which can accelerate healing and cell integration, as well as improve tribological properties. However, the adhesions of these coatings to the Ti surface need to be improved for clinical use. Particularly Silicon (Si) has been found to be essential for normal bone, cartilage growth and development. This hydroxyapatite, modified with the inclusion of small concentrations of silicon has been demonstrating to improve the osteoblast proliferation and the bone extracellular matrix production. Strontium-containing hydroxyapatite (Sr-HA) was designed as a filling material to improve the biocompatibility of bone cement. In vitro, the presence of strontium in the coating enhances osteoblast activity and differentiation, whereas it inhibits osteoclast production and proliferation. The objective of this work was to study Morphology of bone-like apatite formation on Sr and Si-doped hydroxyapatite surface of Ti-6Al-4V alloy after plasma electrolytic oxidation. Anodized alloys was prepared at 270V~300V voltages with various concentrations of Si and Sr ions. Bone-like apatite formation was carried out in SBF solution. The morphology of PEO, phase and composition of oxide surface of Ti-6Al-4V alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Effect of Zn Content on the Corrosion Behavior of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation

  • Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.159-159
    • /
    • 2017
  • Ti-6Al-4V alloy have been used for dental implant because of its excellent biocompatibility, corrosion resistance, and mechanical properties. However, the integration of such implant in bone was not in good condition to achieve improved osseointergraiton. For solving this problem, calcium phosphate (CaP) has been applied as coating materials on Ti alloy implants for hard tissue applications because its chemical similarity to the inorganic component of human bone, capability of conducting bone formation and strong affinity to the surrounding bone tissue. Various metallic elements are known to play an important role in the bone formation and also affect bone mineral characteristics. Especially, Zn is essential for the growth of the human and Zn coating has a major impact on the improvement of corrosion resistance. Plasma electrolytic oxidation (PEO) is a promising technology to produce porous and firmly adherent inorganic Zn containing TiO2(Zn-TiO2)coatings on Ti surface, and the a mount of Zn introduced in to the coatings can be optimized by altering the electrolyte composition. In this study, effect of Zn content on the corrosion behavior of Ti-6Al-4V alloy after plasma electrolytic oxidation were studied by SEM, EDS, XRD, AC impedance, and potentiodynamic polarization test. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67 mV/s and potential range from -1500 mV to +2000 mV. Also, AC impedance was performed at frequencies ranging from 10 MHz to 100 kHz for corrosion resistance.

  • PDF