• Title/Summary/Keyword: dental ceramic

Search Result 561, Processing Time 0.031 seconds

Review of a Laminate Veneer Technique using a Castable Apatite Ceramic Material (Castable Apatite Ceramics Laminate Veneers 술식에 대한 고찰)

  • Yang, Jae-Ho
    • The Journal of the Korean dental association
    • /
    • v.25 no.11 s.222
    • /
    • pp.1019-1028
    • /
    • 1987
  • 결손된 치질과 변색된 법랑질을 수복하기 위해 많은 재료와 술식이 개발되어왔다. 즉 silicate cement, PMMA resin, BISGMA composite resin, glass ionomer cement, porcelain등이 이용되어 왔으나 이것들은 biocompatible하지 않아 이상적인 재료는 아니다. 따라서 인간의 결손된 enamel을 수복할 수 있는 새로운 생역학적인 재료가 필요하게 되었다. 필자는 최근 관심의 대상이 되고 있는 porcelain laminate veneer system(층상 도재 전장관)에 관하여 문헌을 중심으로 고찰해 보고자 한다(국내에서는 장완식 교수께서 1987년 6월10일 보철학교실 세미나에서 video tape를 통해 소개한바 있음). 여기서는 Hobo, Iwata(1985)등이 소개한 castable apatite ceramic material을 이용한 laminate veneer술식에 관해 기술하고 내화성 모형(refractory cast)을 이용한 laminate술식과 비교 기술하고자 한다.

  • PDF

Shear Bond Strength Between Zirconia and Porcelain (지르코니아와 포세린의 전단결합강도)

  • Kim, Sa-Hak
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Purpose: To examine the shear bond strengths of zirconia and veneering ceramic according to their surface processing. Methods: The test samples were divided into three groups: one without zirconia surface processing, one sandblasted, and one sandblasted then 3% etched. Then veneering ceramic was fired on all test samples, and their shear bond strengths were measured. Results: The test samples of the control group (Z1) showed the lowest shear bond strengths of $21.82{\pm}1.02$ MPa. The shear bond strengths of Z2 and Z3 ($28.25{\pm}0.72$ and $26.23{\pm}0.82$ MPa, respectively) were relatively higher than those of the control group. The fracture surface of the control group showed adhesive fractures while the test groups had relatively large numbers of cohesive fractures. Conclusion: The shear bond strength was high in the test groups with surface processing while the fracture surfaces showed compound fractures of adhesive and cohesive fractures.

Full-mouth rehabilitation with pressed ceramic technique using provisional restorations (Pressed ceramic technique을 이용하여 제작되는 완전 도재관 완전 구강 회복 증례)

  • Roh, Hyun-Sik;Woo, Yi-Hyung;Pae, Ahran
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.1
    • /
    • pp.47-51
    • /
    • 2013
  • With the introduction of dental implants, restoration of missing teeth with conventional fixed or removable partial dentures is being replaced with implants. Especially, with young patients, not only longevity but also esthetic factors need to be considered. Implant restorations provide long-term success functionally but, esthetic complications such as, marginal exposure due to gingival recession, loss of the papilla and dark color of metal abutments may occur. Recently, zirconia restorations with CAD/CAM technology provide functional, biocompatible and esthetic restorations possible. All-ceramic restorations using the pressed ceramic technique show better fracture toughness values than those of the conventional porcelain veneering technique. Pressed ceramic technique creates the veneer design in wax and the lost wax technique is used to create the restoration. The final contour of the restoration may be controlled during wax-up. A 22-year old female patient was restored with dental implants and zirconia restorations using the pressed ceramic technique presenting short-term but optimistic prognosis.

In vitro study of compressive fracture strength of Empress 2 crowns cemented with various luting agents

  • Kim Min-Ho;Yang Jae-Ho;Lee Sun-Hyung;Chung Hun-Young;Chang Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.3
    • /
    • pp.260-272
    • /
    • 2001
  • All-ceramic restorations have had a more limited life expectancy than metal ceramic restorations because of their low strength. Their relatively lower strength and resistance to fracture have restricted the use of all-ceramic crowns to anterior applications where occlusal loads are lower. But there has been increasing interest in all-ceramic restorations because patients are primarily concerned with improved esthetics. Many efforts have been made to in prove the mechanical properties of dental ceramics. This study was designed to elucidate the influence of the luting agent on the strength of the Empress 2 crown (staining technique) cemented on human teeth. Seventy extracted human permanent molar teeth were chosen. Teeth were prepared for Empress 2 crowns with milling machine on a surveyor. A dental bur was placed in the mandrel that was positioned so that the long axis of the bur was perpendicular to the surveyor base. Dimensions of the Empress 2 crown preparation were $6^{\circ}$ taper on each side, $1.5{\pm}0.1mm$ shoulder margin, and 4mm crown height. The luting cements used in this study were as follow: 1. Uncemented 2. Zinc phosphate cements (Confi-Dental) 3. Conventional glass ionomer cement : Fuji 1 (GC) 4. Resin-modified glass ionomer cements : Fuji plus (GC) 5. Adhesive cements : Panavia F (Kuralay), Variolink II (Vivadent), Choice (Bisco). Fracture test using Instron. The crowns were loaded in compressive force to evaluate the effect of these cements on the breaking strength of these all-ceramic crowns. A steel ball with a diameter of 4mm was placed on the occlusal surface and load was applied to the steel ball by a cylindrical bolt with a crosshead speed of 0.5mm per minute until fracture occurred. The fractured surface was examined using Scanning Electron Microscopic Image (SEM) to discover the correlation between fracture strength and bonding capacity. Within the limitation of this in vitro study design, the results were as follows : 1. fomentations significantly increased the fracture resistance of Empress ceramic crowns compared to control. Uncemented (206.9 N): ZPC (812.9 N): Fuji 1 (879.5 N): Fuji Plus (937.7 N): Choice (1105.4 N): Variolink II (1221.1 N): Panavia F (1445.2 N). 2. Resin luting agent, treated by a silane bond enhancing agents, yielded a significant increase in fracture resistance. In some of the Panavia F group, a fracture extended into dentin. 3. According to SEM images of fractured Empress crowns, the stronger the bond at both interfaces(crown and die), the more fracture strength was acquired.

  • PDF

A Study of Porcelain Bond Strength to Cast Ti Alloy with respect to Change of Surface Characteristic (표면 변화에 따른 주조용 티타늄 합금과 도재와의 결합강도 변화에 관한 연구)

  • Chung, In-Sung;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.30 no.1
    • /
    • pp.65-71
    • /
    • 2008
  • The use of titanium in the field of dentistry has increased, due to their excellent biocompatibility, appropriate mechanical properties, corrosion-resistance and low price. However, many difficulties with the use of titanium for metal-ceramic crowns remain to be solved. The objective of this study was to evaluate the influence of surface modifications on the bonding characteristics of specific titanium porcelain bonded to cast titanium. The surfaces of Titanium were prepared with 4 test groups, i) sandblasted with particles of different size, ii) sandblasted after treated oxidization and oxidized after sandblast. We observed the bond strength and node aspect of titanium and ceramic, and respect to the methods of modifying surface of titanium by the test of mean roughness of surface, Scanning Electron Microscope, and 3-point flexural bend test. The results show that, 1. The specimens, which treated oxidization after process of sandblast with particles of 50um size, were the better for the bond strength in comparison with other specimen. 2. The specimen with process of sandblasting after oxidization treatment were the better for stability of the bond strength. 3. The wettability of titanium surface affect the bond strength.

  • PDF

Green and Hard Machining Characteristics of Zirconia-alumina Composites for Dental Implant (치과 임플란트용 지르코니아-알루미나 복합체의 생 가공 및 경 가공 특성)

  • Lim, Hyung-Bong;Tang, Dongxu;Lee, Ki-Ju;Cho, Won-Seung
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.152-159
    • /
    • 2011
  • The green and hard machining characteristics of dental ceramics are of great interest to dental industry. The green bodies of TZP/$Al_2O_3$ composites were prepared by the cold isostatic pressing, and machined on the CNC lathe using PCD (polycrystalline diamond) insert under various machining conditions. With increasing nose radius of PCD insert, surface roughness initially increased due to increased cutting resistance, but decreased by the onset of sliding fracture. The lowest surface roughness was obtained at spindle speed of 1,300 rpm and lowest feed rate. Hard bodies were prepared by pressureless sintering the machined green bodies at several temperatures. The grinding test for sintered hard body was conducted using electroplated diamond bur with different grit sizes. During grinding, grain pull out in the composite was occurred due to thermal expansion mismatch between the alumina and zirconia. The strength of the composite decreased with alumina contents, due to increased surface roughness and high monoclinic phase transformed during grinding process. The final polished samples represented high strength by the elimination of a phase transformation layer.

A comparative study on the correlation between Korean foods and the fractures of PFG and all ceramic crowns for posterior applications (구치용 도재소부금관과 전부도재관에 파절을 일으키는 한국음식에 관한 연구)

  • Kim, Jeong-Ho;Lee, Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.156-163
    • /
    • 2009
  • Statement of problem: Recently, there have been increased esthetic needs for posterior dental restorations. The failure of posterior dental ceramic restoration are possible not only by the characters of the component materials but also by the type of food. Purpose: The research aim was to compare the in vitro fracture resistance of simulated first molar crowns fabricated using 4 dental ceramic systems, full-porcelain-occlusal-surfaced PFG, half-porcelain-occlusal-surfaced PFG, Empress 2, Ice Zirkon and selected Korean foods. Material and methods: Eighty axisymmetric crowns of each system were fabricated to fit a preparation with 1.5- to 2.0-mm occlusal reduction. The center of the occlusal surface on each of 15 specimens per ceramic system was axially loaded to fracture in a Instron 4465, and the maximum load(N) was recorded. Afterwards, selected Korean foods specimens(boiled crab, boiled chicken with bone, boiled beef rib, dried squid, dried anchovy, round candy, walnut shell) were prepared. 15 specimens per each food were placed under the Instron and the maximum fracture loads for them were recorded. The 95% confidence intervals of the characteristic failure load were compared between dental ceramic systems and Korean foods. Afterwards, on the basis of previous results, 14Hz cyclic load was applied on the 4 systems of dental ceramic restorations in MTS. The reults were analyzed by analysis of variance and Post Hoc tests. Results: 95% confidence intervals for mean of fracture load 1. full porcelain occlusal surfaced PFG Crown: 2599.3 to 2809.1 N 2. half porcelain occlusal surfaced PFG Crown: 3689.4 to 3819.8 N 3. Ice Zirkon Crown: 1501.2 to 1867.9 N 4. Empress 2 Crown: 803.2 to 1188.5 N 5. boiled crab: 294.1 to 367.9 N 6. boiled chicken with bone: 357.1 to 408.6 N 7. boiled beef rib: 4077.7 to 4356.0 N 8. dried squid: 147.5 to 190.5 N 9. dried anchovy: 35.6 to 46.5 N 10. round candy: 1900.5 to 2615.8 N 11. walnut shell: 85.7 to 373.1 N under cyclic load(14Hz) in MTS, fracture load and masticatory cycles are: 1. full porcelain occlusal surfaced PFG Crown fractured at 95% confidence intervals of 4796.8-9321.2 cycles under 2224.8 N(round candy)load, no fracture under smaller loads. 2. half porcelain occlusal surfaced PFG Crown fractured at 95% confidence intervals of 881705.1-1143565.7 cycles under 2224.8 N(round candy). no fracture under smaller loads. 3. Ice Zirkon Crown fractured at 95% confidence intervlas of 979993.0-1145773.4 cycles under 382.9 N(boiled chicken with bone). no fracture under smaller loads. 4. Empress 2 Crown fractured at 95% confidence intervals of 564.1-954.7 cycles under 382.9 N(boiled chicken with bone). no fracture under smaller loads. Conclusion: There was a significant difference in fracture resistance between experimental groups. Under single load, Korean foods than can cause fracture to the dental ceramic restorations are boiled beef rib and round candy. Even if there is no fracture under single load, cyclic dynamic load can fracture dental posterior ceramic crowns. Experimental data with 14 Hz dynamic cyclic load are obtained as follows. 1. PFG crown(full porcelain occlusion) was failed after mean 0.03 years under fracture load for round candy(2224.8 N). 2. PFG crown(half porcelain occlusion) was failed after mean 4.1 years under fracture load for round candy(2224.8 N). 3. Ice Zirkon crown was failed after mean 4.3 years under fracture load for boiled chicken with bone(382.9 N). 4. Empress 2 crown was failed after mean 0.003 years under fracture load for boiled chicken with bone(382.9 N).

Zirconia Ceramic Powder Coating of Ti-6AI-4V by Laser Cladding (레이저 클래딩을 이용한 Ti-6AI-4V의 Zirconia 세라믹 분말 코팅)

  • Kang, Kyung-Ho;Kim, Jae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.783-788
    • /
    • 2011
  • The recent development of bio-ceramic material is being studied in various bio-material engineering field. There are lots of technical difficulties because manufacturing or bonding technique are required bio-friendliness, cleanliness and persistence. Zirconia ceramic powder is cladded on Ti-6AI-4V metallurgically by laser cladding processing. Laser cladding system with powder feeding delivery is designed and manufactured for optimum processing condition. Increasing of manufacturing speed and good quality of clad layer are achieved by application of preheating of substrate before laser cladding. The thin dilution and good clad layer on the substrate are obtained for applications of bio-materials such as the dental materials and the articulated joints of human body.

Bioactivity of Calcium Phosphate Ceramic Coatings on Metallic Implants

  • Kim, Cheol-Sang;Ducheyne, P.
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.5-12
    • /
    • 1990
  • Calcium phosphate ceramics have been applied intensively to orthopaedic and dental implants by virtue of their osteoconductive nature. In an attempt to enhance the bone implant intergrity and Eta utility, these ceramics are deposited onto the porous surface of metallic implants. The coating procedure and the ensuing phase transformations of the ceramic alter the mechanical properties and surface chemistry of the ceramic layers as well as those of the substrate. These structural and compositional differences are directly related to the interaction mechanisms at the surface-active ceramicbone interface. Material and processing induced influences on dissolution, electrokinetic behavior, ceramic-metallic substrate interface and boRe growth enhancement are presented.

  • PDF