• Title/Summary/Keyword: dental alloy

Search Result 489, Processing Time 0.025 seconds

Electrochemical Behaviors of Binary Ti-Zr Alloys

  • Oh, M.Y.;Kim, W.G.;Choe, H.C.;Ko, Y.M.
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.89-92
    • /
    • 2009
  • Pure Ti as well as Ti-6Al-4V alloy exhibit excellent properties for dental implant applications. However, for a better biocompatibility it seems important to avoid in the composition the presence of V due to the toxic effects of V ion release. Thus Al and V free and composed of non-toxic element such as Nb, Zr alloys as biomaterials have been developed. Especially, Zr contains to same family in periodic table as Ti. The addition of Zr to Ti alloy has an excellent mechanical properties, good corrosion resistance, and biocompatibility. In this study, the electrochemical characteristics of Ti-Zr alloys for biomaterials have been investigated using by electrochemical methods. Methods: Ti-Zr(10, 20, 30 and 40 wt%) alloys were prepared by arc melting and homogenized for 24 hr at $1000^{\circ}C$ in argon atmosphere. Phase constitutions and microstructure of the specimens were characterized by XRD, OM and SEM. The corrosion properties of the specimens were examined through potentiodynamic test (potential range of -1500 ~ 2000 mV), potentiostatic test (const. potential of 300 mV) in artificial saliva solution by potentiostat (EG&G Co, PARSTAT 2273. USA).

Evaluation of effect of galvanic corrosion between nickel-chromium metal and titanium on ion release and cell toxicity

  • Lee, Jung-Jin;Song, Kwang-Yeob;Ahn, Seung-Geun;Choi, Jung-Yun;Seo, Jae-Min;Park, Ju-Mi
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.172-177
    • /
    • 2015
  • PURPOSE. The purpose of this study was to evaluate cell toxicity due to ion release caused by galvanic corrosion as a result of contact between base metal and titanium. MATERIALS AND METHODS. It was hypothesized that Nickel (Ni)-Chromium (Cr) alloys with different compositions possess different corrosion resistances when contacted with titanium abutment, and therefore in this study, specimens ($10{\times}10{\times}1.5mm$) were fabricated using commercial pure titanium and 3 different types of Ni-Cr alloys (T3, Tilite, Bella bond plus) commonly used for metal ceramic restorations. The specimens were divided into 6 groups according to the composition of Ni-Cr alloy and contact with titanium. The experimental groups were in direct contact with titanium and the control groups were not. After the samples were immersed in the culture medium - Dulbecco's modified Eagle's medium[DMEM] for 48 hours, the released metal ions were detected using inductively coupled plasma mass spectrometer (ICP-MS) and analyzed by the Kruskal-Wallis and Mann-Whitney test (P<.05). Mouse L-929 fibroblast cells were used for cell toxicity evaluation. The cell toxicity of specimens was measured by the 3-{4,5-dimethylthiazol-2yl}-2,5-diphenyltetrazolium bromide (MTT) test. Results of MTT assay were statistically analyzed by the two-way ANOVA test (P<.05). Post-hoc multiple comparisons were conducted using Tukey's tests. RESULTS. The amount of metal ions released by galvanic corrosion due to contact between the base metal alloy and titanium was increased in all of the specimens. In the cytotoxicity test, the two-way ANOVA showed a significant effect of the alloy type and galvanic corrosion for cytotoxicity (P<.001). The relative cell growth rate (RGR) was decreased further on the groups in contact with titanium (P<.05). CONCLUSION. The release of metal ions was increased by galvanic corrosion due to contact between base metal and titanium, and it can cause adverse effects on the tissue around the implant by inducing cytotoxicity.

The Effect of Au Addition on the Hardening Mechanism in Ag-30wt%Pd-10wt%Cu Alloy (Ag-30wt% Pd-10wt% Cu 3원합금(元合金) 및 Au 첨가합금(添加合金)의 시효경화특성(時效硬化特性))

  • Lee, K.D.;Nam, S.Y.
    • Journal of Technologic Dentistry
    • /
    • v.21 no.1
    • /
    • pp.27-41
    • /
    • 1999
  • The Ag-Pd-Cu alloys containing a small amount of Au is commonly used for dental purposes, because this alloy cheaper than Au-base alloys for clinical use. However, the most important characteristic of this alloy is age-hardenability, which is not exhibited by other Ag-base dental alloys. The specimens used were Ag-30Pd-10Cu ternary alloy and Au addition alloy. These alloys were melted and casted by induction electric furnace and centrifugal casting machine in Ar atmosphere. These specimens were solution treated for 2hr at $800^{\circ}C$ and were then quenched into iced water, and aged at 350-$550^{\circ}C$ Age-hardening characteristic of the small Au-containing Ag-Pd-Cu dental alloys were investigated by means of hardness testing, X-ray diffraction and electron microscope observations, electrical resistance, differential scanning calorimetric, energy dispersed spectra and electron probe microanalysis. Principal results are as follows ; Maximum hardening occured in two co-phases of ${\alpha}_2$ + PdCu In stage II, decomposition of the $\alpha$ solid solution to a PdCu ordered phase($L1_o$ type) and an Ag-rich ${\alpha}_2$ phase occurred and a discontinuous precipitation occurred at the grain boundary. From the electron microscope study, it was concluded that the cause of age-hardening in this alloy is the precipitation of the PdCu redered phase, which has AuCu I type face-centered tetragonal structure. Precipitation procedure was ${\alpha}{\to}{\alpha}_1+PdCu{\to}{\alpha}_2+PdCu$ at Pd/Cu = 3 Pd element of Ag-Pd-Cu alloy is more effective dental alloy on anti-corrosion and is suitable to isothermal ageing at $450^{\circ}C$.

  • PDF

Effect of cooling rate control on the change in hardness of the multi-purpose Ag-Pd-Zn-In-Sn alloy during porcelain firing simulation and post-firing heat treatment (다목적용 Ag-Pd-Zn-In-Sn계 합금의 모의소성 시 냉각속도의 조절이 소성 및 후열처리에 따른 경도변화에 미치는 영향)

  • Shin, Hye-Jeong;Kim, Min-Jung;Kwon, Yong-Hoon;Kim, Hyung-Il;Seol, Hyo-Joung
    • Korean Journal of Dental Materials
    • /
    • v.44 no.4
    • /
    • pp.337-348
    • /
    • 2017
  • In this study, the effect of cooling rate control on the change in hardness of the multi-purpose Ag-Pd-Zn-In-Sn alloy during porcelain firing simulation and post-firing heat treatment was investigated, and the following results were obtained. Softening of the multi-purpose Ag-Pd-Zn-In-Sn alloy during porcelain firing simulation was suppressed by controlling the cooling rate. When the cooling rate was adjusted to stage 0(firing chamber moves immediately to upper end position), the alloy was softened during porcelain firing simulation, and the hardness was greatly increased by the additional post-firing heat treatment. When the cooling rate was adjusted to stage 3(firing chamber remains closed), the alloy was not softened even after porcelain firing simulation, and the hardness was apparently lowered by the additional post-firing heat treatment. The apparent increase in hardness in the post-firing heat treated alloy after porcelain firing simulation at cooling rate of stage 0 attributed to the active precipitation. The apparent decrease in hardness in the post-firing heat treated alloy after porcelain firing simulation at cooling rate of stage 3 attributed to the fact that the precipitates were solutionized into the matrix by the post-firing heat treatment.

STRESS OF DENTAL IMPLANT ABUTMENT SCREW BY THE TIGHTENING TORQUE (조임 회전력에 따른 치과 임플랜트 지대나사의 응력에 관한 연구)

  • Lee, Won-Joo;Lim, Ju-Hwan;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.5
    • /
    • pp.721-737
    • /
    • 1998
  • Abutment screw loosening of implant restorations is a common problem in the treatment of dental implant. The purpose of this study was to calculate stress and preload from the elongation measurements and to determine maximum tightening torque without plastic deformation of the screw. The length of each gold alloy UCLA screw was measured after tightening to the manufacturer's recommended torque of 32 N-cm. Similarity, titanium UCLA screws were measured after tightening to the manufacturer's recommended torque of 20 N-cm. Loosening torque was also measured after tightening to 32 N-cm torque for gold alloy abutment screws and 20 N-cm for titanium abutment screws. The results were as follows ; 1. There was a regressive relationship between screw elongation and tightening torque (gold alloy : $r^2=0.987$, titanium : $r^2=0.978$), and the mean preload calculated from elongation measurements was $501.11{\pm}26.85\;N$ (gold alloy) and $399.43{\pm}7.61\;N$ (titanium). 2. Stress calculated for the gold alloy and titanium screws at maximum recommended tightening torque was less than 60% of their respective yield strengths and with-in the elastic range. Maximum tightening torque without plastic deformation was 61 N-cm (gold alloy) and 39 N-cm (titanium). 3. For titanium screws, there was a significant difference between loosening after trial 1 and loosening after trials 2 to 5 (p<0.05). No statistically significant difference was seen in mean loosening torques between the first and subsequent trials for gold alloy screws.

  • PDF

Effects of HA and TiN Coating on the Electrochemical Characteristics of Ti-6Al-4 V Alloys for Bone Plates

  • Oh, Jae-Wook;Choe, Han-Cheol;Ko, Yeong-Mu
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.5
    • /
    • pp.249-252
    • /
    • 2004
  • Effects of HA and TiN coating on the electrochemical characteristics of Ti-6AI-4V alloys for bone plates were investigated using various test methods. Ti-6AI-4V alloys were fabricated by using a vacuum induction furnace and bone plates were made by laser cutting and polishing. HA was made of extracted tooth sintered and then tooth ash was used as HA coating target. The TiN and HA film coating on the surface were carried on using electron-beam physical vapor deposition (EB-PVD) method. The corrosion behaviors of the samples were examined through potentiodynamic method in 0.9% NaCI solutions at $36.5\pm$$1^{\circ}C$ and corrosion surface was observed using SEM and XPS. The surface roughness of TiN coated bone plates was lower than that of tooth ash coated plates. The structure of TiN coated layer showed the columnar structure and tooth ash coated layer showed equiaxed and anisotrophic structure. The corrosion potential of the TiN coated specimen is comparatively high. The active current density of TiN and tooth ash coated alloy showed the range of about $1.0xl0^{-5}$ $A\textrm{cm}^2$, whereas that of the non-coated alloy was$ 1.0xl0^{-4}$ $A\textrm{cm}^2$. The active current densities of HA and TiN coated bone plates were smaller than that of non-coated bone plates in 0.9% NaCl solution. The pitting potential of TiN and HA coated alloy is more drastically increased than that of the non-coated alloy. The pit number and pit size of TiN and HA coated alloy decreased in compared with those of non-coated alloy. For the coated samples, corrosion resistance increased in the order of TiN coated, tooth ash coated, and non-coated alloy.

Change of shear bond strength of orthodontic brackets according to surface treatment on dental gold alloy (치과용 금합금의 표면처리에 따른 교정용 브라켓의 전단결합강도 변화)

  • Min, Ji-Hyun;Hwang, Hyeon-Shik;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • v.30 no.4 s.81
    • /
    • pp.483-490
    • /
    • 2000
  • The dental gold alloy shows a lower bond strength than the natural teeth in bracket bonding, and this can be a possible source of subsequent bond failure. This study aims to evaluate the effect of various gold alloy surface treatment techniques on shear bond strength between the orthodontic adhesives and the gold alloy and to find ways of increasing the bond strength. Two hundred and forty specimens made of the dental fold alloy were divided into twelve groups based on the combination of surface treatment methods(non-surface treatment, sandblasted, sandblasted plus tin-plated, and sandblasted plus intermediate adhesive) and adhesive systems (Ortho-one, Panavia 21, Superbond C&B). The specimens with bonded brackets were placed in distilled water at $37^{\circ}C$ for 24 hours and shear bond strength was measured by a universal testing machine. The results were as follows: 1. All surface-treated groups showed a significantly higher shear bond strength than non-surface-treated groups. 2. The sandblasted plus tin-plated group showed a significantly higher shear bond strength than the sandblasted group only when Panavia 21 was involved. 3. The sandblasted plus intermediate adhesive group showed a significantly higher shear bond strength than sandblasted group regardless of the type of adhesive used. 4. Of the three resin adhesive types, the Superbond C&B showed the highest bond strength, followed by Panavia 21 and Ortho-one. These findings suggest that a combination of sandblasting and intermediate resin treatment is desirable in order to enhance bracket bond strength regardless of adhesive types.

  • PDF

HYDROXYAPATITE GRANULE IMPLANTED Ti-ALLOY

  • Nonami, Toru;Taoda, Hiroshi;Kamiya, Akira;Naganuma, Katsuyoshi;Sonoda, Tsutomu;Kameyama, Tetsuya
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.356-359
    • /
    • 1999
  • To obtain a biomaterial that has both biological affinity and high mechanical strength, hydroxyapatite granules were implanted into the surface of pure titanium film coated titanium alloy. The film was coated by reactive DC sputtering method on the alloy substrate. Hydroxyapatite granules (32- $38\mu\textrm{m}$ in diameter)were spread over titanium alloy substrate and pressed to implant the granules in the substrate. They can be implanted into substrate under 17MPa at $800^{\circ}C$ for 10minutes. The only tops of the granules were exposed and they were firmly stuck in substrate. The hydroxyapatite implanted titanium alloy composites were expected to be useful for biomaterials as artificial bones and dental roots.

  • PDF

Comparative analysis on mechanical properties of gold and Co-Cr dental alloys due to joining methods (이종금속간의 결합방법에 따른 결합강도에 관한 비교 연구)

  • Park, Seong-Kyu;Choi, Boo-Byung;Kwon, Kung-Rock
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.2
    • /
    • pp.75-86
    • /
    • 2003
  • The purpose of this study was to evaluate their mechanical properties after laser-welding or soldering of precious and non-precious dental alloys. For this study, 30 Co-Cr alloy specimens, 15 gold alloy specimens, 15 palladium alloy specimens were casted and seperated on the middle area. 15 sperated Co-Cr specimens and 15 seperated gold alloy specimens were laser welded (GW Group). 15 sperated Co-Cr specimens and 15 sperated gold alloy specimens were soldered by coventional soldering method (GS Group). 15 sperated Co-Cr specimens and 15 seperated palladium alloy specimens were laser welded (PW Group). 15 sperated Co-Cr specimens and 15 sperated palladium alloy specimens were soldered by coventional soldering method (PS Group). Tensile strength, 0.2% yield strength, % elongation were recorded in nine specimens of each group. Bending strength were record in six specimens of each group. These data for four groups were subjected to a two-way analysis of variance(ANOVA). The fracture locations, fractured surfaces were examined by SEM(scanning electron microscope). The results were as following: 1) In the same alloy combination, the tensile strength and 0.2% yield strength and of the laser welded group with same metal combination were significantly less than soldered groups(p<0.05). 2) In the combination of Co-Cr/Palladium, the bending strength of laser welded group were significantly less than that of soldered groups(p<0.05). In the combination of Co-Cr/Gold, the bending strength of laser welded group were significantly higher than that of soldered groups(p<0.05). 3) In the same method of joint, the tensile strength and 0.2% yield strength and bending strength of the Co-Cr/gold were significantly higher than Co-Cr/palladium(p<0.05). 4) There was no significantly statistical difference between each group in the % elongation(p>0.05). 5) The fracture of the laser welded specimens occured in the welding area and a large void was observed at the center of the fracture surface. 6) The fracture of the soldered specimens occured also inthe soldered area and many porpsities were showed at the fracture sites.