• Title/Summary/Keyword: density matrix

Search Result 1,027, Processing Time 0.029 seconds

Matrix Infrared Spectra and DFT Computations of CH2CNH and CH2NCH Produced from CH3CN by Laser-Ablation Plume Radiation

  • Cho, Han-Gook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1361-1365
    • /
    • 2013
  • The smallest ketenimine and hydrogen cyanide N-methylide ($CH_2CNH$ and $CH_2NCH$) are provided from the argon/acetonitrile matrix samples exposed to radiation from laser ablation of transition-metals. New infrared bands are observed in addition to better determination of the vibrational characteristics for the previously reported bands, and the $^{13}C$ substituted isotopomers ($^{13}{CH_2}^{13}CNH$ and $^{13}CH_2N^{13}CH$) are also generated. Density functional frequency calculations and the D and $^{13}C$ isotopic shifts substantiate the vibrational assignments. $CH_2CNH$ is probably produced through single-step conversion of $CH_3CN$, whereas $CH_2NCH$ through two-step conversion via 2H-azirine. Inter-conversions between these two products evidently do not occur during photolysis and annealing.

A Design of ALT LDPC Codes Using Circulant Permutation Matrices (순환 치환 행렬을 이용한 ALT LDPC 부호의 설계)

  • Lee, Kwang-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.1
    • /
    • pp.117-124
    • /
    • 2012
  • In this paper, we propose a simple H parity check matrix from the CPM(circulant permutation matrix), which can easily avoid the cycle-4, and approach to flexible code rates and lengths. As a result, the operations of the submatrices will become the multiplications between several CPMs, the calculations of the LDPC(low density parity check) encoding could be simplest. Also we consider the fast encoding problem for LDPC codes. The proposed constructions could lead to fast encoding based on the simplest matrices operations for both regular and irregular LDPC codes.

Tribological Properties of the Aluminum Short fiber and glass fiber Reinforced Tin-Bronze Matrix Composites (알루미나 단섬유 및 유리섬유 보강 청동기지 복합재의 마모특성 연구)

  • 황순홍;안병길;이범주;최웅수;허무영
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.13-19
    • /
    • 1996
  • The tribological properties of the aluminum short fiber and glass fiber reinforced tin-bronze matrix composites manufactured by vacuum hot pressing was studied. The effect of the composition and the relative density on the wear properties was examined by a reciprocal type tribo-test machine. The results were discussed by the observation of the microstructure of sintered specimen and worn surface observation using SEM and EDS. Addition of the fibers led to the wear resistance since the metal matrix was reinforced by the fibers. The reinforcement of the fiber seemed to be stronger as the distribution of the fibers was more uniform. Graphite also reduce the wear loss. The pores in the sintered composites seemed to play an important role to improve the wear resistance since the pores provide the places where the solid lubricants locate.

  • PDF

마이크로플라즈마 전류 스위치 및 응용

  • Chae, Gyeol-Yeo;Kim, Myeong-Min;Mun, Cheol-Hui;Lee, Sang-Yeon;Lee, Seung-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.433-433
    • /
    • 2010
  • A microplasma current switch (MPCS) for a device operated in a current mode like organic light-emitting diodes (OLEDs), which features matrix addressability and current switching, is presented as well as its architecture and operational principle. The MPCS utilizes the intrinsic memory and conductivity of plasmas to achieve matrix addressability and current switching. We have fabricated a $100\;mm\;{\times}\;100\;mm$ MPCS panel in which its cell pitch is $1080\;{\mu}m\;{\times}\;1080\;{\mu}m$. The matrix addressability and current switching were verified. In addition, the current-voltage (I-V) characteristic of the unit cell was measured when plasmas were ignited. In principle, the scheme of the MPCS is equivalent to that of a double Langmuir probe diagnosing plasma parameters except for their relative dimensions to a plasma volume. Accordingly, the I-V characteristic was analyzed by a double Langmuir probe theory, and the plasma density and electron temperature were estimated from the I-V curve using a collisional double Langmuir probe theory.

  • PDF

Axiomatic Approach for desing Appraisement and Development DVD (II) (DVD 설계평가 및 개선을 위한 공리적 접근 (II))

  • Moon, Yong-Rak;Cha, Sung-Woon;Heo, Bo-Seog
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.82-88
    • /
    • 1999
  • In order to execute the major role as the high density large capacity data storage device, which is one of the major characteristics of DVD(Digital Versatile Disk), there must be a method to effectively absorb the external impact or internal vibration. The DVD which has been developed until now tries to control two different types of vibrations, using only one absorber. But this goes against the independence Axiom of Axiomatic Approach which makes the design to be coupled. And in fat most of the malfunctions occurring during DVD data input/output is due to impact or vibration. Therefore in this paper, the vibration absorption system and operation reliability of DVD will be evaluated with the Axiomatic Approach and plans and feasibility to design an improved vibration absorption system will be provided also based on the Axiomatic Approach.

  • PDF

Mixed matrix membranes for dye removal

  • Evrim Celik-Madenli;Dilara Kesiktas
    • Membrane and Water Treatment
    • /
    • v.14 no.4
    • /
    • pp.175-180
    • /
    • 2023
  • Mixed matrix membranes (MMMs) can be a promising alternative for the solution of dye removal from coloured effluents. Polymeric membranes are widely used due to their good film-forming ability, flexibility, separation properties, and cost. However, they have low mechanical, chemical, and thermal resistances. Moreover, the fouling of polymeric membranes is high because of their hydrophobic nature. Hence, there is an increasing interest in organic-inorganic hybrid membranes as a new-generation membrane material. It has been shown that carbon nanotubes have the potential to increase the material properties of polymers with their low density, high strength, hardness, and exceptional aspect ratio. In this work, carbon nanotubes blended MMMs were prepared and methyl orange removal efficiency of them was investigated. Compared to the bare membranes, MMMs showed not only increased hydrophilicity, water content, and pure water flux but also increased methyl orange rejection and flux recovery

A Modified Approach to Density-Induced Support Vector Data Description

  • Park, Joo-Young;Kang, Dae-Sung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • The SVDD (support vector data description) is one of the most well-known one-class support vector learning methods, in which one tries the strategy of utilizing balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. Recently, with the objective of generalizing the SVDD which treats all training data with equal importance, the so-called D-SVDD (density-induced support vector data description) was proposed incorporating the idea that the data in a higher density region are more significant than those in a lower density region. In this paper, we consider the problem of further improving the D-SVDD toward the use of a partial reference set for testing, and propose an LMI (linear matrix inequality)-based optimization approach to solve the improved version of the D-SVDD problems. Our approach utilizes a new class of density-induced distance measures based on the RSDE (reduced set density estimator) along with the LMI-based mathematical formulation in the form of the SDP (semi-definite programming) problems, which can be efficiently solved by interior point methods. The validity of the proposed approach is illustrated via numerical experiments using real data sets.

New Watermarking Technique Using Data Matrix and Encryption Keys

  • Kim, Il-Hwan;Kwon, Chang-Hee;Lee, Wang-Heon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.646-651
    • /
    • 2012
  • Meaningful logos or random sequences have been used in the current digital watermarking techniques of 2D bar code. The meaningful logos can not only be created by copyright holders based on their unique information, but are also very effective when representing their copyrights. The random sequences enhance the security of the watermark for verifying one's copyrights against intentional or unintentional attacks. In this paper, we propose a new watermarking technique taking advantage of Data Matrix as well as encryption keys. The Data Matrix not only recovers the original data by an error checking and correction algorithm, even when its high-density data storage and barcode are damaged, but also encrypts the copyright verification information by randomization of the barcode, including ownership keys. Furthermore, the encryption keys and the patterns are used to localize the watermark, and make the watermark robust against attacks, respectively. Through the comparison experiments of the copyright information extracted from the watermark, we can verify that the proposed method has good quality and is robust to various attacks, such as JPEG compression, filtering and resizing.

LDPC Generation and Decoding concatenated to Viterbi Decoder based on Sytematic Convolutional Encoder (길쌈부호기를 이용한 LDPC 패리티검사 행렬생성 및 비터비 복호 연계 LDPC 복호기)

  • Lee, Jongsu;Hwang, Eunhan;Song, Sangseob
    • Smart Media Journal
    • /
    • v.2 no.2
    • /
    • pp.39-43
    • /
    • 2013
  • In this paper, we suggest a new technique for WPC parity-check matrix (H-matrix) generation and a corresponding decoding process. The key idea is to construct WPC H-matrix by using a convolutional encoder. It is easy to have many different coderates from a mother code with convolutional codes. However, it is difficult to have many different coderates with LDPC codes. Constructing LDPC Hmatrix based on a convolutional code can easily bring the advantage of convolutional codes to have different coderates. Moreover, both LDPC and convolutional decoding algorithms can be applied altogether in the decoding part. This process prevents the performance degradation of short-length WPC code.

  • PDF

Densification of Cu-50%Cr Powder Compacts and Properties of the Sintered Compacts (Cu-50%Cr 분말성형체의 치밀화 및 소결체 물성)

  • 김미진;정재필;도정만;박종구;홍경태
    • Journal of Powder Materials
    • /
    • v.7 no.4
    • /
    • pp.218-227
    • /
    • 2000
  • It is well known that the Cu-Cr alloys are very difficult to be made by conventional sintering methods. This difficulty originates both from limited solubility of Cr in the Cu matrix and from limited sintering temperature due to high vapor pressures of Cr and Cu components at the high temperature. Densification of Cu-50%Cr Powder compacts by conventional Powder metallurgy Process has been studied. Three kinds of sintering methods were tested in order to obtain high-density sintered compacts. Completely densified Cu-Cr compacts could be obtained neither by solid state sintering method nor by liquid phase sintering method. Both low degree of shrinkage and evolution of large pores in the Cu matrix during the solid state sintering are attributed to the anchoring effect of large Cr particles, which inhibits homogeneous densification of Cu matrix and induces pore generation in the Cu matrix. In addition, the effect of undiffusible gas coming from the reduction of Cu-oxide and Cr-oxide was observed during liquid phase sintering. A two-step sintering method, solid state sintering followed by liquid phase sintering, was proved to have beneficial effect on the fabrication of high-dendsity Cu-Cr sintered compacts. The sintered compacts have properties similar to those of commercial products.

  • PDF