• Title/Summary/Keyword: density generator

Search Result 260, Processing Time 0.03 seconds

Single-Chip Controller Design for Piezoelectric Actuators using FPGA (FPGA를 이용한 압전소자 작동기용 단일칩 제어기 설계)

  • Yoon, Min-Ho;Park, Jungkeun;Kang, Taesam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.513-518
    • /
    • 2016
  • The piezoelectric actuating device is known for its large power density and simple structure. It can generate a larger force than a conventional actuator and has also wide bandwidth with fast response in a compact size. To control the piezoelectric actuator, we need an analog signal conditioning circuit as well as digital microcontrollers. Conventional microcontrollers are not equipped with an analog part and need digital-to-analog converters, which makes the system bulky compared with the small size of piezoelectric devices. To overcome these weaknesses, we are developing a single-chip controller that can handle analog and digital signals simultaneously using mixed-signal FPGA technology. This gives more flexibility than traditional fixed-function microcontrollers, and the control speed can be increased greatly due to the parallel processing characteristics of the FPGA. In this paper, we developed a floating-point multiplier, PWM generator, 80-kHz power control loop, and 1-kHz position feedback control loop using a single mixed-signal FPGA. It takes only 50 ns for single floating-point multiplication. The PWM generator gives two outputs to control the charging and discharging of the high-voltage output capacitor. Through experimentation and simulation, it is demonstrated that the designed control loops work properly in a real environment.

Study on the shape design of field coil in HTS generator considering stress condition

  • Jo, Young-Sik;Lee, Ju-Min;Hong, Jung-Pyo;Lee, Ju;Sohn, Myung-Hwan;Kwon, Young-Kil;Ryu, Kang-Sik
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.257-261
    • /
    • 2000
  • The value of I$_c$(critical current) in HTS (High Temperature Superconductor) tape has a great influence on B${\bot}$(vertical field). Therefore, in shape design of field coil for the HTSG(High Temperature Superconducting Generator), a method to reduce the B${\bot}$ should be considered in order to maintain the stability and substantial improvement on the performance. On the basis of the magnetic field analysis, this paper deals with various field coil shape according to the iron plate to obtain small B${\bot}$ by using Biot-Savart's law, image method and 2D FEA(2 Dimensional Finite Element Analysis) considering the stress condition of HTS. Moreover, the analysis is verified by comparison with experimental results. And also this paper presents the advanced model by using 3D FEA, in which flux density at armature is calculated in 5kVA class HTSG.

  • PDF

Development of Oxygen Generator for Vehicle with Two Head Vaccum Pump (Two Head Vacuum Pump를 이용한 차랑용 산소 발생기 개발)

  • Joo, Nam-Kyu;Baek, Gyu-Youl;Cha, Jin-Souk;Lee, Jun-Bae;Kim, Nam-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.114-119
    • /
    • 2004
  • An oxyge generator, which is applied to a particular space such as automobile, must consider compactness and lightweight as well as problems caused by noise, vibration and heat dissipation. For these matters, a BLDC motor was adopted to reduce heat while a bed using synthetic zeolite NaX made it possible to generate high-density oxygen with relatively small size. Moreover, owing to the characteristic of synthetic zeolite Nax, a two-head vacuum pump was designed to desorb nitrogen without additional pump unit.

Analysis of Impedance and Stray Inductance for Pulsed Plasma Reactor (펄스 플라스마 반응기에 대한 임피던스 및 누설 인덕턴스 분석)

  • Choi, Young-Wook;Lee, Hong-Sik;Rim, Geun-Hie;Kim, Tae-Hee;Kim, Jong-Wha;Jang, Gil-Hong;Shin, Wan-Ho;Song, Young-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.4
    • /
    • pp.253-260
    • /
    • 1999
  • In this paper, the impedance characteristic of wire-plate pulsed plasma reactor was investigated by experiment. The experiment have carried out under the several conditions of voltage, wire length and wire-plate distance. The impedance of reactor wad decreased with increasing voltage and wire length. The nature of discharge in reactor was changed from streamer corona to spark with increasing incident energy, from which we understood the critical energy density between the two discharges. Fromthis experiment, we proposed the method for the impedance matching between pulse generator and pulsed plasma reactor. Additionally, we succeeded in the analysis ofstray inductance of 0.5MW reactor using EMTP (ElectroMagnetic Transients Program). This means that EMTP is also useful for the analysis of inevitable stray inductance of forthcoming a large scale reactor.

  • PDF

A Study on the Explosive Plugging of A Repair for Defective Tube/Tubeplate on the Nuclear Steam Generator (원자력 증기발생기 결함 세관 보수용 폭발 Plugging에 관한 연구)

  • 이병일;심상한;강정윤;이상래
    • Explosives and Blasting
    • /
    • v.17 no.4
    • /
    • pp.18-31
    • /
    • 1999
  • The explosive forming has been used for many year to expand tubes into tubesheets. this process has demonstrated ability to direct carefully the energy of an explosive to expand tubes into tubesheet holes without damaging the tubesheet and without causing the excessive cold work at the tube I.D. that is normally associated with mechanical expansion. The success of explosive tube expansion provided the background for the development of the explosive tube plug. The main results are as follows : (1) The optimum explosives and explosive qualities are PETN, RDX, HMS and about 18~31gr/ft of explosive plugging in nuclear steam generator. (2) Explosive plugging's thickness is 0.9~1.8mm. If groove of 0.4 mm formed in plug outside, For the hydraulic leakage is go up, explosive plugging of formed groove are applicate tube and tubrplate. (3) Sheath is designed on the polyethylene of low density, In thermal impact test of the $430^\circ{C}$, hydraulic leakage is $300kg/cm^2$. (4) About 10~60mm oxide inclusions are existed on the space of explosive plug and tube protect to the leakage.

  • PDF

Amplification of Current Harmonics Due to Self-Excitation Capacitors for Wind Induction Generators (자여자 풍력 유도발전기의 캐패시터에 따른 고조파 전류의 증폭)

  • Oh, Yong;Choi, Yong-Sung;Hwang, Jong-Sun;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.192-197
    • /
    • 2008
  • The value of this paper is to use reduced size apparatuses to perform field measurement in order to identify and validate that the harmonic-current effects are due to the presence of self-excitation capacitance connected at stator's terminals of the studied SEIG. This paper has presented the measured electrical quantities of a three-phase $\Delta$-connected wind induction generator (WIG) under sudden connection and disconnection of resistive loads. An intelligent power-system recorder/monitor has been employed to measure three-phase voltages and currents of the studied system at the terminals of the studied WIG and the load. The measured electrical quantities have been analyzed. Total harmonic distortion (THD) of current using cumulative probability density function has been employed to determine the penetration of harmonic distortion at load side. The results show that the harmonic currents generated by the studied WIG can be severely amplified by the connected self-excited capacitance at the stator's terminals.

Characteristic Study According to the Shape of Field in the Air-cored HTS Synchronous Generator (공심형 HTS 동기발전기의 계자 형상 변화에 따른 특성연구)

  • Jo, Young-Sik;Ahn, Ho-Jin;Hong, Jung-Pyo;Lee, Ju;Kwon, Young-Kil;Ryu, Kang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.849-851
    • /
    • 2000
  • The value of $I_c$(critical current) in HTS (High Temperature Superconductor) tape has a great influence on $B{\bot}$ (vertical field). Therefore, in shape design of field coil for the HTSG(High Temperature Superconducting Generator), a method to reduce the $B{\bot}$ should be considered in order to maintain the stability and substantial improvement on the performance. On the basis of the magnetic field analysis, this paper deals with various field coil shape to obtain small $B{\bot}$ by using Biot-Savart's law and image method. Moreover the analysis is verified by comparison with experimental results. And also this paper presents the advanced model by using 3D FEM(3 Dimensional Finite Element Method), in which flux density at armature is calculated in 5kVA class HTSG.

  • PDF

NEW APPLICATIONS OF R.F. PLASMA TO MATERIALS PROCESSING

  • Akashi, Kazuo;Ito, Shigru
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.371-378
    • /
    • 1996
  • An RF inductively coupled plasma (ICP) torch has been developed as a typical thermal plasma generator and reactor. It has been applied to various materials processings such as plasma flash evaporation, thermal plasma CVD, plasma spraying, and plasma waste disposal. The RF ICP reactor has been generally operated under one atmospheric pressure. Lately the characteristics of low pressure RF ICP is attracting a great deal of attention in the field of plasma application. In our researches of RF plasma applications, low pressure RF ICP is mainly used. In many cases, the plasma generated by the ICP torch under low pressure seems to be rather capacitive, but high density ICP can be easily generated by our RF plasma torch with 3 turns coil and a suitable maching circuiit, using 13.56 MHz RF generator. Plasma surface modification (surface hardening by plasma nitriding and plasma carbo-nitriding), plasma synthesis of AIN, and plasma CVD of BN, B-C-N compound and diamond were practiced by using low pressure RF plasma, and the effects of negative and positive bias voltage impression to the substrate on surface modification and CVD were investigated in details. Only a part of the interesting results obtained is reported in this paper.

  • PDF

Thermal Analysis of Water Cooled ISG Based on a Thermal Equivalent Circuit Network

  • Kim, Kyu-Seob;Lee, Byeong-Hwa;Jung, Jae-Woo;Hong, Jung-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.893-898
    • /
    • 2014
  • Recently, the interior permanent synchronous motor (IPMSM) has been applied to an integrated starter and generator (ISG) for hybrid electric vehicles. In the design of such a motor, thermal analysis is necessary to maximize the power density because the loss is proportional to the power of a motor. Therefore, a cooling device as a heat sink is required internally. Generally, a cooling system designed with a water jacket structure is widely used for electric motors because it has advantages of simple structure and cooling effectiveness. An effective approach to analyze an electric machine with a water jacket is a thermal equivalent network. This network is composed of thermal resistance, a heat source, and thermal capacitance that consider the conduction, convection, and radiation. In particular, modeling of the cooling channel in a network is challenging owing to the flow of the coolant. In this paper, temperature prediction using a thermal equivalent network is performed in an ISG that has a water cooled system. Then, an experiment is conducted to verify the thermal equivalent network.

Design and Construction of 35 kWh Class Superconductor Flywheel Energy Storage System (35 kWh급 초전도 플라이휠 에너지 저장 시스템 설계 및 제작)

  • Jung, S.Y.;Han, Y.H.;Park, B.J.;Han, S.C.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.60-65
    • /
    • 2012
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. A 35 kWh class SFES module was designed and constructed as part of a 100kWh/1MW class SFES composed of three 35 kWh class SFES modules. The 35 kWh class SFES is composed of a main frame, superconductor bearings, a composite flywheel, a motor/generator, electro-magnetic bearings, and a permanent magnet bearing. The high energy density composite flywheel is levitated by the permanent magnet bearing and superconductor bearings, while being spun by the motor/generator, and the electro-magnetic bearings are activated while passing through the critical speeds. Each of the main components was designed to provide maximum performance within a space-limited compact frame. The 35 kWh class SFES is designed to store 35 kWh, with a 350 kW charge/discharge capacity, in the 8,000 ~ 12,000 rpm operational speed range.