• Title/Summary/Keyword: density curve

Search Result 800, Processing Time 0.031 seconds

Comparisons of Adsorption-Desorption Characteristics of Major 10 Kinds Components Consisting of Gasoline Vapor (유증기를 구성하는 주요 10종류 성분의 온도에 따른 흡·탈착특성 비교)

  • Lee, Song-Woo;Na, Young-Soo;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1593-1600
    • /
    • 2014
  • Adsorption and desorption characteristics of the representative 10 kinds components consisting of gasoline vapor on activated carbon were investigated at the temperature range of $-30^{\circ}C{\sim}25^{\circ}C$. The breakthrough curves of each vapors obtained by the Thomas model were well described the breakthrough experimental results of this study. The breakthrough times of each vapors were correlated with the molecular weight, density, and vapor pressure. The breakthrough times had greater correlation with boiling point than molecular weight and density. The slope of the breakthrough curve was a proportional relationship with the rate constant (k) of Thomas model expression. The higher the slope of the breakthrough curve, the rate constant was larger. The biggest slope vapor had the smallest adsorption capacity ($q_e$). Adsorption and desorption characteristics of mixed vapor similar to the gasoline vapor were studied at room temperature ($25^{\circ}C$). The mixed vapor consisting of 9 components; group A (pentane, hexene, hexane), group B (benzene, toluene), group C (octane, ethylbenzene, xylene, nonane) was examined. Group A was not nearly adsorbed because of substitution by group C, and the desorption capacity of group A was smaller than group C. The adsorbed substances were confirmed to be Group C.

Measuring Thresholds of Serum Lipid Level related to Hypertension and Age Using Receiver Operating Characteristic Curve in Korean Adult

  • Kim, Seong-Gil;Park, So-Hyun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.3
    • /
    • pp.301-305
    • /
    • 2014
  • PURPOSE: The purpose of this study was to determine the optimal thresholds of serum lipid level related to hypertension according to age in Korean adults. METHODS: In total, 564 adults who visited the health examine center in general hospital were included. The blood pressure and lipid profiles of low density lipoprotein cholesterol(LDL), high density lipoprotein cholesterol (HDL), triglyceride(TG) were measured. Receiver operating characteristic (ROC) curve were used to establish optimal thresholds between blood pressure and lipid profiles. RESULTS: The optimal TG cutoff value were 110.50(mg/dl) in the 18-39 and 81.50(mg/dl) in the 40-59 age group, and optimal cutoff value of LDL were 126.50(mg/dl) in the 40-59 age group and 111.00(mg/dl) in the 60 and over age group. There was a negative correlation between HDL and hypertension, a higher HDL decreased hypertension. The optimal cutoff value of HDL was 49.50(mg/dl) in the 18-39 age group. CONCLUSION: The thresholds of hypertension were lower in LDL and TG with aging. This result indicated that elderly people needs to concern more about their lipid profiles to maintain healthy cardiovascular function.

An Analysis of the Protective Potential Distribution against Corrosion for Hull ICCP with Computer simulation (컴퓨터 Simulation을 통한 선체 음극방식(ICCP)의 방식전위분포해석)

  • Im, Gwan-Jin;Kim, Ki-Joon;Lee, Myung-Hoon;Moon, Kyung-Man
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.395-400
    • /
    • 2005
  • The ship hull part is always exposed to severe corrosive environments. Therefore, it should be protected in appropriate ways to reduce corrosion problems. So there are two effective methods in order to protect the corrosion of ship hull. One is the paint coating as a barrier between steel and electrolyte (seawater) and the other is the cathodic protection(CP) supplying protection current. In the conventional design process of the cathodic protection system the required current densities of protected materials have been used. However, the anode position of field or laboratory experiment for obtaining the required current density for CP is significantly different from anode position for real structures. Therefore, the recent CP design must consider the optimum anode position for potential distribution equally over the ship hull. The CP design companies in the advanced countries can obtain the potential distribution results on the cathodic materials by using the computer analysis module. This study would show how to approach the potential analysis in the field of corrosion engineering. The computer program can predict the under protection area on the structure when the boundary condition and analysis procedure are reasonable. In this analysis the polarization curve is converted to the boundary condition in material data.

  • PDF

Drying Characteristics of Large Western Redcedar Timber During Radio Frequency/Vacuum Drying (웨스턴 레드시더 큰 정각재(正角材)의 고주파 진공 건조 특성)

  • Jung, Hee-Suk;Avramidis, Stavros;Cai, Liping
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.1-8
    • /
    • 1998
  • Western redcedar timber, 26 by 26cm in cross section and by 200cm long, was dried in a laboratory radio-frequency/vacuum kiln under 65torr of ambient pressure and a fixed frequency of 6.78MHz for the potential rapidly dry large timber. All process data were collected and saved in a computer through a data acquisition system. The temperature in the middle of timber was higher than temperature at the quarter point of timber length and thickness. Temperature gradients developed in the longitudinal and transverse direction of timber. The pressure in the middle of timber was higher than pressure at the quarter point of timber length. The pressure in the middle of timber was lower in the early stage of drying, and higher in the latter stage of drying than pressure at the quarter point of timber thickness. Power density was very highest during heating period and then gradually decreased. The drying curve was approximately linear and the total drying time was 27 hours from an initial moisture content(MC) of 48.6 percent to a final Me of 19.2 percent with only a few mild internal checks in the middle location of timber.

  • PDF

Method of AC Loss Under a Condition of Sinusoidal Flux Density Using Digital Feedback (정현파 자속밀도 제어와 디지털 궤환을 이용한 AC 손실 측정방법)

  • Jang, Pyung-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.1
    • /
    • pp.23-26
    • /
    • 2012
  • New digital feedback algorithm was developed to measure iron loss of soft magnetic materials under a condition of sinusoidal flux waveform. $V_{in}$(B) curve was used instead of H(B) curve to decide next input waveform in the feedback module so that adjusting phases of current waveform, flux waveform, and input waveform could be removed. The effectiveness of the developed algorithm was verified when iron loss of ferrite cores was measured under frequencies of 1 and 10 kHz.

Polarization Characteristics of Heat-treated Ni-based Self-flux Alloy Coating in Alkaline Solution (후열처리한 니켈기 자융성 합금 코팅의 알칼리 용액에서의 분극특성)

  • Kim, Tea-Yong;Kim, Jea-Dong;Kim, Yeong-Sik
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.37-42
    • /
    • 2014
  • The purpose of this paper is to investigate polarization characteristics of heat-treated Ni-based self-flux alloy coating in alkaline solution. Ni-based self-flux alloy powder was sprayed to a steel substrate using flame spray process, and heat treatments were performed in a vacuum furnace at $800^{\circ}C$, $900^{\circ}C$, $1000^{\circ}C$ and $1100^{\circ}C$. After heat treatments, corrosion tests were carried out using potentiostat/galvanostat at solution with pH 8 and pH 13. Corrosion potential(Ecorr) and corrosion current density(Icorr) could be analyzed from polarization curve. Anticorrosive effect of heat-treated coating at solution with pH 8 was relatively greater than at solution with pH 13. Heat-treated coating at $1100^{\circ}C$ showed the greatest anti-corrosion characteristics in alkaline solution.

Effect of Fusing Treatment on Anti-Corrosion Characteristics of Ni-based Self-flux Alloy Coating (니켈기 자융성 합금 코팅의 방식특성에 미치는 후열처리의 영향)

  • Kim, Tae-Yong;Kim, Jae-Dong;Kim, Yeong-Sik
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.79-85
    • /
    • 2013
  • This study aims at investigating the effect of a fusing treatments on anti-corrosion characteristics of Ni-based self-flux alloy coating. Ni-based coatings were fabricated by flame spray process on steel substrates, and fusing treatments were performed using a vacuum furnace at $800^{\circ}C$ $900^{\circ}C$, $1000^{\circ}C$ and $1100^{\circ}C$. After fusing treatments, corrosion tests were carried out using potentiostat/galvanostat at solution with pH 2 and pH 6. Corrosion potential(Ecorr) and corrosion current density(Icorr) could be analyzed from polarization curve. Fusing-treated coating at $1100^{\circ}C$ showed more favorable anti-corrosion characteristics than as-sprayed coating. Anticorrosive effect of fusing-treated coating at solution with pH 2 was relatively greater than at solution with pH 6. Fusing-treated coating at $1100^{\circ}C$ showed the most excellent anti-corrosion characteristics.

An empirical investigation of nuclear energy consumption and carbon dioxide (CO2) emission in India: Bridging IPAT and EKC hypotheses

  • Danish, Danish;Ozcan, Burcu;Ulucak, Recep
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2056-2065
    • /
    • 2021
  • The transition toward clean energy is an issue of great importance with growing debate in climate change mitigation. The complex nature of nuclear energy-CO2 emissions nexus makes it difficult to predict whether or not nuclear acts as a clean energy source. Hence, we examined the relationship between nuclear energy consumption and CO2 emissions in the context of the IPAT and Environmental Kuznets Curve (EKC) framework. Dynamic Auto-regressive Distributive Lag (DARDL), a newly modified econometric tool, is employed for estimation of long- and short-run dynamics by using yearly data spanning from 1971 to 2018. The empirical findings of the study revealed an instantaneous increase in nuclear energy reduces environmental pollution, which highlights that more nuclear energy power in the Indian energy system would be beneficial for climate change mitigation. The results further demonstrate that the overarching effect of population density in the IPAT equation stimulates carbon emissions. Finally, nuclear energy and population density contribute to form the EKC curve. To achieving a cleaner environment, results point out governmental policies toward the transition of nuclear energy that favours environmental sustainability.

Modeling and Analysis of Cushioning Performance for Multi-layered Corrugated Structures

  • Park, Jong Min;Kim, Ghi Seok;Kwon, Soon Hong;Chung, Sung Won;Kwon, Soon Goo;Choi, Won Sik;Kim, Jong Soon
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.221-231
    • /
    • 2016
  • Purpose: The objective of this study was to develop cushion curves models and analyze the cushioning performance of multi-layered corrugated structures (MLCS) using a method based on dynamic stress-energy relationship. Methods: Cushion tests were performed for developing cushion curve models under 12 combinations of test conditions: three different combinations of drop height, material thickness, and static stress for each of four levels of energy densities between 15 and $60kJ/m^3$. Results: Dynamic stress and energy density for MLCS followed an exponential relationship. Cushion curve models were developed as a function of drop height, material thickness, and static stress for different paperboards and flute types. Generally, the differences between the shock pulse (transmitted peak acceleration) and cushion curve (position and width of belly portion) for the first drop and the averaged second to fifth drop were greater than those for polymer-based cushioning materials. Accordingly, the loss of cushioning performance of MLCS was estimated to be greater than that of polymer-based cushioning materials with the increasing number of drops. The position of the belly of the cushion curve of MLCS tends to shift upward to the left with increasing drop height, and the belly portion became narrower. However, depending on material thickness, under identical conditions, the cushion curve of MLCS showed an opposite tendency. Conclusions: The results of this study can be useful for environment-friendly and optimal packaging design as shock and vibrations are the key factors in cushioning packaging design.

Design and Characterization of a Microwave Plasma Source Using a Rectangular Resonant Cavity (마이크로웨이브 공진 공동을 이용한 플라즈마 원의 설계 및 특성)

  • Kim, H.T.;Park, Y.S.;Sung, C.K.;Yi, J.R.;Hwang, Y.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.408-418
    • /
    • 2008
  • The rectangular resonant cavity was designed and characterized as a microwave plasma source for focused ion beam. The optimum cavity was calculated analytically and analyzed in detail by using HFSS(High Frequency Structure Simulator). Since the resonant cavity can be affected by the permittivity of quartz chamber and plasma, the cavity is designed to be changeable in one direction. By observing the microwave input power at which the breakdown begins, the optimum cavity length for breakdown is measured and compared with the calculated one, showing in good agreement with the optimum length reduced by 10cm according to the permittivity change in the presence of quartz chamber. The shape of breakdown power curve as a function of pressure appears to be similar to Paschen-curve. After breakdown, plasma densities increase with microwave power and the reduced effective permittivity in the cavity with plasma results in larger optimum length. However, it is not possible to optimize the cavity condition for high density plasmas with increased input power, because too high input power causes expansion of density cutoff region where microwave cannot penetrate. For more accurate microwave cavity design to generate high density plasma, plasma column inside and outside the density cutoff region needs to be treated as a conductor or dielectric.