• Title/Summary/Keyword: densitometric image analysis

Search Result 13, Processing Time 0.024 seconds

A preliminary study of semi-quantitative, comparative evaluation of split or half fingerprints using Densitometric Image Analysis (DIA) - Inter-analyst differences for split or half fingerprints -

  • Song, Minkyu;Kim, Seung-chan;Choi, Sung-Woon
    • Analytical Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.56-67
    • /
    • 2021
  • Due to the difficulty of grading visualized fingerprints with previously known evaluation methods for the comparison of split fingerprints, a preliminary study was performed with the densitometric image analysis (DIA) method as a potential quantitative and supplementary evaluation method. Each image of inked split fingerprints was divided into 4 zones for analysis. Weekly intra- and inter- analysis by two analysts with three whole fingerprints that were constructed by combining inked split fingerprints showed that the average area values and the ranges of difference fluctuation were not significantly different between strong fingerprints and strong-weak pairs, while they were different in weak fingerprints and weak-weak pairs. In the case of weak fingerprints, the exact acquisition of ridges was difficult and this seemed to influence the results. An additional study is needed for the improved reliability using DIA method with weak fingerprints such as 8 zones division rather than 4 zones. In addition, the analysis results performed by several analysts at different times should be used to improve the reliability of the analysis method further. Based on the above result, it can be judged that utilizing the DIA method as a secondary evaluation method of the existing scoring system would be effective with the additional studies especially on weak fingerprints.

Preliminary semi-quantitative evaluation of developed latent fingerprints on non-porous surface with natural powders using a densitometric image analysis (비 다공성 표면에서 천연분말로 현출된 잠재지문의 농도계 이미지분석을 이용한 예비적인 반 정량적 평가)

  • Kim, Eun-Mi;Heo, Bo-Reum;Ok, Yun-Seok;Kim, Jin-Kyung;Joung, In-Nam;Choi, Sung-Woon
    • Analytical Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.283-292
    • /
    • 2016
  • Conventional fingerprint powders used during crime scene investigations pose potential health hazards. Thus, multiple natural replacement powders, including squid ink powder, indigo and rice powder were used to develop (visualize) latent fingerprints on non-porous surfaces (e.g., glass, plastic and tile). Fingerprints developed using the natural powders were compared using the Automatic Fingerprint Identification System (AFIS) with those developed with traditional black powder. The peak areas of ridges were also compared using densitometric image analyses. Collectively, objective and quantitative evaluation methods were developed. The effectiveness of natural powders varied depending on the surface but, in general, squid ink powder performed well on most surfaces. Indigo powder performed well on tile surfaces, while rice powder performed well on glass surfaces. Plastic was the most difficult surface from which to develop fingerprints. Image analysis using Field Emission Scanning Electron Microscopy (SEM) demonstrated the importance of the size and shape of natural powder particles to properly adhere to the ridges. Although densitometric image analyses did not correlate the number of minutiae and ridge peak areas, an unbiased, objective evaluation method would be possible using image analyses with a reference image. Additional experimentation will yield safe and cost-effective natural powders with which adequate fingerprint development can be performed.

A pilot application study of densitometric image analysis as a potential comparative evaluation method for visualized fingerprints

  • Kim, Eun-Ji;Kim, Soo-Kyung;Seo, Kyung-Suk;Choi, Sung-Woon
    • Analytical Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.197-207
    • /
    • 2020
  • The current comparison methods with scoring systems that are used to compare visualized latent fingerprints (LF) have disadvantages. Evaluators using these methods are prone to make errors and fail to discriminate LFs correctly to notice the differences among those LFs. Therefore, a comparative and quantitative evaluation method that is capable of obtaining more objective and quantitative results is needed. Densitometric image analysis (DIA) is used in other fields as a reliable semi-quantitative comparison method. To apply DIA to LFs, the potential variables that can occur during the DIA process were tested. The visualized ridges of LFs can be compared using the concentration of dots against the background to make it possible to analyze the ridges with DIA. The variables that can be present during the DIA process include the thickness of the analysis line, the number of ridges to be taken, the number of divided zones within each of the fingerprints, and the angles of the analysis line against the ridge lines that were selected. From the analysis of the inked fingerprints and circular lines that are similar to fingerprints, the angle of the analysis lines with the ridge line was the most significant variable. The preliminary test result was applied to the comparison of LFs that were developed with the powder method and then compared with the AFIS analysis. A similar trend was found, and a more detailed and semi-quantitative comparison of the visualized LFs was possible. In the future, it is necessary to check the evaluative ability of the DIA method by analyzing the visualized LFs with other various development methods. However, DIA is currently an option that can be used as an objective comparative evaluation method during fingerprint studies with supplementary role.

Densitometric features of cell nuclei for grading bladder carcinoma (세포핵 조밀도에 의한 방광암의 진행 단계)

  • Choi, Heung-Kook;Bengtsson, Ewert
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.357-362
    • /
    • 1996
  • A way of quantitatively describing the tissue architecture we have investigated when developing a computer program for malignancy grading of transitional cell bladder carcinoma. The minimum spanning trees, MST was created by connecting the center points of the nuclei in the tissue section image. These nuclei were found by thresholding the image at an automatically determined threshold followed by a connected component labeling and a watershed algorithm for separation of overlapping nuclei. Clusters were defined in the MST by thresholding the edge lengths. For these clusters geometric and densitometric features were measures. These features were compared by multivariate statistical methods to the subjective grading by the pathologists and the resulting correspondence was 85% on a material of 40 samples.

  • PDF

A preliminary study and its application for the development of the quantitative evaluation method of developed fingerprints on porous surfaces using densitometric image analysis (다공성 표면에서 현출된 지문의 정량적인 평가방법 개발을 위한 농도계 이미지 분석을 이용한 선행연구 및 응용)

  • Cho, Jae-Hyun;Kim, Hyo-Won;Kim, Min-Sun;Choi, Sung-Woon
    • Analytical Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.142-153
    • /
    • 2016
  • In crime scene investigation, fingerprint identification is regarded to be one of the most important techniques for personal identification. However, objective and unbiased evaluation methods that would compare the fingerprints with diverse available and developing methods are currently lacking. To develop an objective and quantitative method to improve fingerprint evaluation, a preliminary study was performed to extract useful research information from the analysis with densitometric image analysis (CP Atlas 2.0) and the Automated Fingerprint Identification System (AFIS) for the developed fingerprints on porous surfaces. First, inked fingerprints obtained by varying pressure (kg.f) and pressing time (sec.) to find optimal conditions for obtaining fingerprint samples were analyzed, because they could provide fingerprints of a relatively uniform quality. The extracted number of minutiae from the analysis with AFIS was compared with the calculated areas of friction ridge peaks from the image analysis. Inked fingerprints with a pressing pressure of 1.0 kg.f for 5 seconds provided the most visually clear fingerprints, the highest number of minutiae points, and the largest average area of the peaks of the friction ridge. In addition, the images of the developed latent fingerprints on thermal paper with the iodine fuming method were analyzed. Fingerprinting condition of 1.0 kg.f/5 sec was also found to be optimal when generating highest minutiae number and the largest average area of peaks of ridges. Additionally, when the concentration of ninhydrin solution (0.5 % vs. 5 %) was used to compare the developed latent fingerprints on print paper, the best fingerprinting condition was 2.0 kg.f/5 sec and 5 % of ninhydrin concentration. It was confirmed that the larger the average area of the peaks generated by the image analysis, the higher the number of minutiae points was found. With additional tests for fingerprint evaluation using the densitometric image analysis, this method can prove to be a new quantitative and objective assessment method for fingerprint development.

Evaluation of peri-implant bone density changes in $Br{\aa}nemark$ implants by computer assisted densitometric image analysis (CADIA) (디지털 공제술을 이용한 $Br{\aa}nemark$ 임플란트 주위 골조직 분석)

  • So, Sung-Soo;Noh, Hyuen-Soo;Kim, Chang-Sung;Choi, Seong-Ho;Chae, Jung-Kiu;Kim, Chong-Kwan;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.1
    • /
    • pp.137-150
    • /
    • 2007
  • CADIA(Computer-assisted densitometric image analysis) method is used to analyze bone density changes around the implants. The usefullness and reproducibility of the method was assessed. We tried to find out if there is any possibility to quantitiate and qualitify peri-implant bone density change as time passes. And we concluded that this newly developed linear analysis is efficient for analyzing peri-implant bone density change non-Invasively. In this study, 2152 machined $Br{\aa}nemark$ fixtures installed from 1994 to 2002 in the department of Periodontics, Dental hospital of College of Dentistry, Yonsei University were included. Of these fixtures 22 radiographically analyzable failed fixtures were used as experimental group, and 22 successful implants placed in the same patient were used as control group. 1. 57 out of 1635 machined $Br{\aa}nemark$ standard and Mk II implants system failed, the survival rate was 96.5%. And 11 out of 517 machined $Br{\aa}nemark$ Mk III and Mk IV implants system failed, the survival rate was 97.9%. Total survival rate was 96.8%. 2. 22 failed implants were used for the analysis, 10 of which failed before prosthetic treatment due to infection and overheating. 12 failed due to overload after prosthetic treatment, 63.6% of which failed during the early phase of functional loading, i, e. before 1 year of loading. 3. Bone density change values around coronal region of the failed implants were $-6.54{\pm}6.35$, middle region were $-3.53{\pm}5.78$, apical region were $-0.75{\pm}10.33$, resulting in average of $-3.71{\pm}8.03$. 4. Bone density change values around coronal region of the successful implants were $4.25{\pm}4.66$, middle region were $6.33{\pm}5.02$, apical region were $9.89{\pm}4.67$, resulting in average of $6.27{\pm}5.29$. 5. There was a statistically significant difference between two groups (p<0.01). In conclusion, the linear analysis method using computer-assisted densitometric image analysis could be a useful method for the analysis of implants, and could be used for future implant researchs.

Nucleus Recognition of Uterine Cervical Pap-Smears using FCM Clustering Algorithm

  • Kim, Kwang-Baek
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.94-99
    • /
    • 2008
  • Segmentation for the region of nucleus in the image of uterine cervical cytodiagnosis is known as the most difficult and important part in the automatic cervical cancer recognition system. In this paper, the region of nucleus is extracted from an image of uterine cervical cytodiagnosis using the HSI model. The characteristics of the nucleus are extracted from the analysis of morphemetric features, densitometric features, colormetric features, and textural features based on the detected region of nucleus area. The classification criterion of a nucleus is defined according to the standard categories of the Bethesda system. The fuzzy C-means clustering algorithm is employed to the extracted nucleus and the results show that the proposed method is efficient in nucleus recognition and uterine cervical Pap-Smears extraction.

Evaluation of bone quality in alveolar crest obscured by dental implants ; A pilot study by densitometric digital analysis in mandibular bone specimen (치과 임플란트 주변 협설측 치조골의 변화분석 - 하악골 시편에서의 디지털 농도분석법을 이용한 실험적 고찰 -)

  • Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.6
    • /
    • pp.900-913
    • /
    • 1998
  • Despite of technical difficulties, the combination of occlusal projection and densitometric digital analysis may ultimately provide a means of detection of subtle bone loss at the facial and lingual side of dental implant (Oblique occlusal view is more useful for $ITI^{(R)}$ dental implant due to its contour of shoulder as like tulip flower). In this study, conventional periapical projections of x-ray beam had shown more high sensitivity to detect the bony defects than oblique occlusal projections in alveolar crest obscured by dental implants or not, even if the difference was not statistically significant. Unlike conventional periapical projections. occusal projections combined with densitometric digital analysis technique may provide a means for detection of subtle bone change at the all around of implants without obscuring effect by implant itself. Although the results from this in vitro study were performed under limited circumstances, these results might afford more possibility and versatile modality of diagnosis options to clinician in the implant practice.

  • PDF

Nucleus Segmentation and Recognition of Uterine Cervical Pap-Smears using Enhanced Fuzzy ART Algorithm (개선된 퍼지 ART 알고리즘을 이용한 자궁 경부 세포진 핵 분할 및 인식)

  • Kim, Kwang-Baek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.519-524
    • /
    • 2006
  • Segmentation for the region of nucleus in the image of uterine cervical cytodiagnosis is known as the most difficult and important part in the automatic cervical cancer recognition system. In this paper, the region of nucleus is extracted from an image of uterine cervical cytodiagnosis using the fuzzy grey morphology operation. The characteristics of the nucleus are extracted from the analysis of morphemetric features, densitometric features, colormetric features, and textural features based on the detected region of nucleus area. The classification criterion of a nucleus is defined according to the standard categories of the Bethesda system. The enhanced fuzzy ART algorithm is used to the extracted nucleus and the results show that the proposed method is efficient in nucleus recognition and uterine cervical Pap-Smears extraction.

A preliminary study to determine the order of the latent fingerprint deposition on thermal paper - A short term study - (감열지상 잠재지문의 남겨진 순서결정에 대한 예비적 연구 - 단기연구 -)

  • Lim, Dong-A;Ok, Yun-Seok;Heo, Bo-Reum;Choi, Sung-Woon
    • Analytical Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.279-286
    • /
    • 2017
  • Determination of the order of latent fingerprints deposition on the surface of thermal paper, often found in crime scenes, is related to the study of time course and aging of fingerprints and can provide additional information in criminal investigations. A preliminary study was performed to determine the deposition order of fingerprints left with two different conditions of deposition pressure and time (in seconds) after 1 day intervals for 7 days on thermal paper (receipt and fax thermal paper) using an iodine fuming method. The resultant images of the visualized fingerprints were analyzed with densitometric image analysis to measure the changes in the areas of the ridges, which can be correlated to the deposition order. No significant variation was found with the different types of thermal paper. The average areas of the friction ridges increased gradually or were similar to the values from day 1 for 3 days, and then a continual decrease was shown from day 4 through day 7. The area values from day 6 and day 7 were less than half of those from day 1. Furthermore, the test with overlapped fingerprints showed the possibility of differentiation between fingerprints that are 1-3 and 6-7 days old based on the clarity visible to the naked eye. Additional experiments with the deposition conditions can prove that the current method is valuable for the determining the order of fingerprint deposition on thermal paper.