• 제목/요약/키워드: dense networks

검색결과 172건 처리시간 0.027초

Low Complexity Zero-Forcing Beamforming for Distributed Massive MIMO Systems in Large Public Venues

  • Li, Haoming;Leung, Victor C.M.
    • Journal of Communications and Networks
    • /
    • 제15권4호
    • /
    • pp.370-382
    • /
    • 2013
  • Distributed massive MIMO systems, which have high bandwidth efficiency and can accommodate a tremendous amount of traffic using algorithms such as zero-forcing beam forming (ZFBF), may be deployed in large public venues with the antennas mounted under-floor. In this case the channel gain matrix H can be modeled as a multi-banded matrix, in which off-diagonal entries decay both exponentially due to heavy human penetration loss and polynomially due to free space propagation loss. To enable practical implementation of such systems, we present a multi-banded matrix inversion algorithm that substantially reduces the complexity of ZFBF by keeping the most significant entries in H and the precoding matrix W. We introduce a parameter p to control the sparsity of H and W and thus achieve the tradeoff between the computational complexity and the system throughput. The proposed algorithm includes dense and sparse precoding versions, providing quadratic and linear complexity, respectively, relative to the number of antennas. We present analysis and numerical evaluations to show that the signal-to-interference ratio (SIR) increases linearly with p in dense precoding. In sparse precoding, we demonstrate the necessity of using directional antennas by both analysis and simulations. When the directional antenna gain increases, the resulting SIR increment in sparse precoding increases linearly with p, while the SIR of dense precoding is much less sensitive to changes in p.

TSDnet: 적외선과 가시광선 이미지 융합을 위한 규모-3 밀도망 (TSDnet: Three-scale Dense Network for Infrared and Visible Image Fusion)

  • 장영매;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.656-658
    • /
    • 2022
  • The purpose of infrared and visible image fusion is to integrate images of different modes with different details into a result image with rich information, which is convenient for high-level computer vision task. Considering many deep networks only work in a single scale, this paper proposes a novel image fusion based on three-scale dense network to preserve the content and key target features from the input images in the fused image. It comprises an encoder, a three-scale block, a fused strategy and a decoder, which can capture incredibly rich background details and prominent target details. The encoder is used to extract three-scale dense features from the source images for the initial image fusion. Then, a fusion strategy called l1-norm to fuse features of different scales. Finally, the fused image is reconstructed by decoding network. Compared with the existing methods, the proposed method can achieve state-of-the-art fusion performance in subjective observation.

User Association and Base Station Sleep Management in Dense Heterogeneous Cellular Networks

  • Su, Gongchao;Chen, Bin;Lin, Xiaohui;Wang, Hui;Li, Lemin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권4호
    • /
    • pp.2058-2074
    • /
    • 2017
  • Dense Heterogeneous Cellular Networks(HCNs) offer a promising approach to meet the target of 1000x increase in aggregate data rates in 5G wireless communication systems. However how to best utilize the available radio resources at densely deployed small cells remains an open problem as those small cells are typically unplanned. In this paper we focus on balancing loads across macro cells and small cells by offloading users to small cells, as well as dynamically switching off underutilized small cells. We propose a joint user association and base station(BS) sleep mangement(UA-BSM) scheme that proactively offloads users to a fraction of the densely deployed small cells. We propose a heuristic algorithm that iteratively solves the user association problem and puts BSs with low loads into sleep. An interference relation matrix(IRM) is constructed to help us identify the candidate BSs that can be put into sleep. User associations are then aggregated to selected small cells that remain active. Simulation results show that our proposed approach achieves load balancing across macro and small cells and reduces the number of active BSs. Numerical results show user signal to interference ratio(SINR) can be improved by small cell sleep control.

Analysis and study of Deep Reinforcement Learning based Resource Allocation for Renewable Powered 5G Ultra-Dense Networks

  • Hamza Ali Alshawabkeh
    • International Journal of Computer Science & Network Security
    • /
    • 제24권1호
    • /
    • pp.226-234
    • /
    • 2024
  • The frequent handover problem and playing ping-pong effects in 5G (5th Generation) ultra-dense networking cannot be effectively resolved by the conventional handover decision methods, which rely on the handover thresholds and measurement reports. For instance, millimetre-wave LANs, broadband remote association techniques, and 5G/6G organizations are instances of group of people yet to come frameworks that request greater security, lower idleness, and dependable principles and correspondence limit. One of the critical parts of 5G and 6G innovation is believed to be successful blockage the board. With further developed help quality, it empowers administrator to run many systems administration recreations on a solitary association. To guarantee load adjusting, forestall network cut disappointment, and give substitute cuts in case of blockage or cut frustration, a modern pursuing choices framework to deal with showing up network information is require. Our goal is to balance the strain on BSs while optimizing the value of the information that is transferred from satellites to BSs. Nevertheless, due to their irregular flight characteristic, some satellites frequently cannot establish a connection with Base Stations (BSs), which further complicates the joint satellite-BS connection and channel allocation. SF redistribution techniques based on Deep Reinforcement Learning (DRL) have been devised, taking into account the randomness of the data received by the terminal. In order to predict the best capacity improvements in the wireless instruments of 5G and 6G IoT networks, a hybrid algorithm for deep learning is being used in this study. To control the level of congestion within a 5G/6G network, the suggested approach is put into effect to a training set. With 0.933 accuracy and 0.067 miss rate, the suggested method produced encouraging results.

NetMiner를 활용한 도시재생사업 참여주체의 시기별 소셜 네트워크 변화 특성 분석 : 순천시 원도심 도시재생선도지역을 중심으로 (Analysis of Social Network Change Characteristics of Participants in Urban Regeneration Project Using NetMiner : Focused on the Urban Regeneration Leading Area in Suncheon-City)

  • 김어진;구자훈
    • 한국IT서비스학회지
    • /
    • 제19권1호
    • /
    • pp.1-16
    • /
    • 2020
  • Suncheon City Regeneration Project is known as the concept of cultural residents. Through the previous projects, the residents' capabilities have been improved, and the projects have been carried out according to their strategies. For this reason, participants in urban regeneration projects are important. The purpose of this study is to actually identify the 'rescue center' and 'direct relationship' with the analysis utilizing the characteristics of social networks NetMiner solution of the participants, who led the project, Suncheon. Surveys and interviews were conducted for participants, and the characteristics of social networks were analyzed in time series to quantify and visualize the results. As a result of the analysis, social networks were changed among the participants before and after the urban regeneration project. Initially, loose networks were denser over time, and initially networks formed only around participants were expanded over time. Network analysis has revealed that the system is strengthening with urban regeneration projects in the form of public and public-private cooperation. This highlights the need for a city-centered urban regeneration strategy centered on people and shows that a dense network of participants can be a success factor.

SVM on Top of Deep Networks for Covid-19 Detection from Chest X-ray Images

  • Do, Thanh-Nghi;Le, Van-Thanh;Doan, Thi-Huong
    • Journal of information and communication convergence engineering
    • /
    • 제20권3호
    • /
    • pp.219-225
    • /
    • 2022
  • In this study, we propose training a support vector machine (SVM) model on top of deep networks for detecting Covid-19 from chest X-ray images. We started by gathering a real chest X-ray image dataset, including positive Covid-19, normal cases, and other lung diseases not caused by Covid-19. Instead of training deep networks from scratch, we fine-tuned recent pre-trained deep network models, such as DenseNet121, MobileNet v2, Inception v3, Xception, ResNet50, VGG16, and VGG19, to classify chest X-ray images into one of three classes (Covid-19, normal, and other lung). We propose training an SVM model on top of deep networks to perform a nonlinear combination of deep network outputs, improving classification over any single deep network. The empirical test results on the real chest X-ray image dataset show that deep network models, with an exception of ResNet50 with 82.44%, provide an accuracy of at least 92% on the test set. The proposed SVM on top of the deep network achieved the highest accuracy of 96.16%.

5G NR 기반 개방형 스몰셀 기술 동향 (Trend of 5G NR Based Open Small Cell Technologies)

  • 문정모;박용직;황현용;나지현
    • 전자통신동향분석
    • /
    • 제33권5호
    • /
    • pp.33-41
    • /
    • 2018
  • The paradigm of mobile communication technology has changed from an increase in transmission capacity to service-based technologies satisfying various types of service requirements. One of the new paradigms is a service that provides users with a QoE (Quality Of Experience (QoE), at anytime and anywhere. 5G defines various technologies such as dense network structures and beam selection for increasing the transmission capacity and ensuring the quality of experience so as to satisfy this requirement, and related research is underway. In this paper, we describe the definition of a 5G small cell and 5G network structure as well as research trends of standardization and related technologies for constructing optimal solutions for mobile users in dense networks based on small cells.

A Study on DNN-based STT Error Correction

  • Jong-Eon Lee
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.171-176
    • /
    • 2023
  • This study is about a speech recognition error correction system designed to detect and correct speech recognition errors before natural language processing to increase the success rate of intent analysis in natural language processing with optimal efficiency in various service domains. An encoder is constructed to embedded the correct speech token and one or more error speech tokens corresponding to the correct speech token so that they are all located in a dense vector space for each correct token with similar vector values. One or more utterance tokens within a preset Manhattan distance based on the correct utterance token in the dense vector space for each embedded correct utterance token are detected through an error detector, and the correct answer closest to the detected error utterance token is based on the Manhattan distance. Errors are corrected by extracting the utterance token as the correct answer.

Interference Analysis in an Urban Mesh Network Operating in the 60-GHz Band

  • Rasekh, Maryam Eslami;Farzaneh, Forouhar
    • ETRI Journal
    • /
    • 제35권5호
    • /
    • pp.775-785
    • /
    • 2013
  • Because of their exclusive features, millimeter wave directive mesh networks can be considered for small cell backhaul support in urban environments. For this purpose, a network of closely spaced stations has been considered with very directive line-of-sight links operating in the 60-GHz band. An attempt is made to evaluate channel response and interference behavior in such a network, taking into account the effect of building blockage. A simple grid of building blocks is considered as the propagation environment, and wave propagation is simulated using 2.5-dimensional (2.5D) ray tracing (2D with ground effect) to calculate the received signal at different nodes in the network. The results are compared with free space predictions and used to evaluate interference at all nodes in the channel and describe certain characteristics of links, such as the delay profile and the correlation length.

신경회로망 데이터 연관 알고리즘에 근거한 다중표적 추적 시스템 (Multi-Target Tracking System based on Neural Network Data Association Algorithm)

  • 이진호;류충상;김은수
    • 전자공학회논문지A
    • /
    • 제29A권11호
    • /
    • pp.70-77
    • /
    • 1992
  • Generally, the conventional tracking algorithms are very limited in the practical applications because of that the computation load is exponentially increased as the number of targets being tracked is increase. Recently, to overcome this kind of limitation, some new tracking methods based on neural network algorithms which have learning and parallel processing capabilities are introduced. By application of neural networks to multi-target tracking problems, the tracking system can be made computationally independent of the number of objects being tracked, through their characteristics of massive parallelism and dense interconnectivity. In this paper, a new neural network tracking algorithm, which has capability of adaptive target tracking with little increase of the amount of calculation under the clutter and noisy environments, is suggested and the possibility of real-time multi-target tracking system based on neural networks is also demonstrated through some good computer simulation results.

  • PDF