• Title/Summary/Keyword: dense morphology

Search Result 256, Processing Time 0.03 seconds

Generation of DEM Data Under Forest Canopy Using Airborne Lidar

  • Woo Choong-Shik;Kim Tae-Guen;Shin Jung-Il;Lee Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.512-514
    • /
    • 2005
  • Accurate DEM surface of forest floor is very important to extract any meaningful information regarding forest stand structure, such as tree heights, stand density, crown morphology, and biomass. In airborne lidar data processing, DEM data of forest floor is mostly generated by interpolating those elevation points obtained from last laser returns. In this study, we try to analyze the property of the last laser return under relatively dense forest canopy. Airborne laser data were obtained over the study area in relatively dense pine plantation forest. Two DEM data were generated by using all the points in the last laser returns and using only those points after removing non-ground points. From the preliminary analysis on these DEM data, we found that more than half of points among the last laser returns are actually hit from canopy, branches, and understory vegetation that should be removed before generating the surface DEM data.

  • PDF

EVOLUTIONARY MODELS OF ROTATING DENSE STELLAR SYSTEMS WITH EMBEDDED BLACK HOLES

  • FIESTAS, JOSE A.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.345-347
    • /
    • 2015
  • We present evolutionary models of rotating self-gravitating systems (e.g. globular clusters, galaxy cores). These models are characterized by the presence of an initial axi-symmetry due to rotation. Central black hole seeds are included in our models, and black hole growth due to the consumption of stellar matter is simulated until the central potential dominates the kinematics of the core. Our goal is to study the long-term evolution (Gyr) of relaxed dense stellar systems which deviate from spherical symmetry, and their morphology and final kinematics. With this purpose in mind, we developed a 2D Fokker-Planck analytical code, and confirmed its results using detailed N-Body simulations, applying a high performance code developed for GPU machines. We conclude that the initial rotation significantly modifies the shape and lifetime of these systems, and cannot be neglected in the study of the evolution of globular clusters, and the galaxy itself. Our models give a constraint for the final intermediate black hole masses expected to be present in globular clusters.

Effects of Process Variables on The Electrochemical Recovery of Palladium in A HCl Solution

  • Kim, Min-Seuk;Lee, Jae-Chun;Kim, Won-Baek
    • Resources Recycling
    • /
    • v.14 no.1
    • /
    • pp.55-63
    • /
    • 2005
  • This study investigated the electrochemical recovery of palladium in a HCl solution that is used for palladium leaching. The high acidity of HCl solution and the low concentration of Pd ions increased the cathodic overpotential and reduced the limiting current density. Lowering the current density produced dense deposits; however, they were under high tensile stress. Raising the temperature affected both the densification and the stress, which enabled the attainment of dense Pd deposits under low stress. Lowering the current density and raising the temperature up to 70$^{\circ}C$ was recommended for the recovery of palladium as sound bulk Pd deposits. Current efficiency was over 85% at the initial stage of recovery may decrease the current efficiency, since a low Pd ion concentration results in a low limiting current density.

A Study on the Pd-Ni Alloy Hydrogen Membrane using the Porous Nickel Metal Support (다공성 Ni 금속 지지체를 사용한 Pd-Ni 합금 수소 분리막 연구)

  • Kim Dong-Won;Um Ki-Youn;Kim Sang-Ho;Park Jong-Su
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.289-295
    • /
    • 2004
  • A dense palladium-nikel (Pd-Ni) alloy composite membrane has been fabricated on microporous nickel support mixed with submicron/micron nickel powder instead of mesoporous stainless steel support. Plasma treatment process is introduced as pre-treatment process instead of HCI activation. Pd-Ni alloy composite membrane prepared by electro plating was fairly a uniform and dense surface morphology. The membrane was characterized by permeation experiments with hydrogen and nitrogen gases at temperature 773 K and pressure 2.2 psi. The results showed that hydrogen ($H_2$) permeance was 27 ml/$\textrm{cm}^2$ㆍatmㆍmin and hydrogen/ nitrogen ($_H2$$N_2$) selectivity was 8 at 773 K.

Ultrastructure of the fertilized egg envelopes in Ancistrus cirrhosus, Loricariidae, Teleostei

  • Dong Heui Kim
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.13.1-13.7
    • /
    • 2020
  • We examined the morphology of fertilized egg and ultrastructures of fertilized egg envelopes of Ancistrus cirrhosus belong to Loricariidae using light and electron microscopes. The fertilized eggs formed a mass on the spawning place and were yellowish, spherical, non-transparent, demersal, adhesive, and a narrow perivitelline space. But, the adhesiveness of fertilized eggs was disappeared after spawning excluding contact parts. The micropyle with funnel shape was surrounded by 15-19 furrow lines of egg envelope in a spoke-like pattern. The outer surface of egg envelope has smooth side and inner surface of egg envelope was rough with grooves. Also, the total thickness of the fertilized egg envelope was about 32.58 ± 0.85 ㎛ (n = 20), and the fertilized egg envelope consisted of three layers, an outer adhesive electron-dense layer, a middle layer with low electron density and an inner electron-dense layer with grooves in counter structure from other most teleost. Collectively, these morphological characteristics and adhesive property of fertilized egg, and ultrastructures of micropyle, outer surface, and section of fertilized egg envelope are showed species specificity.

Effects of Duty Cycle and Pulse Frequency on the Microstructure and Mechanical Properties of TiAlN Coatings (듀티 싸이클 및 펄스 주파수가 TiAlN 코팅막의 미세구조와 기계적 특성에 미치는 영향에 관한 연구)

  • Chun, Sung-Yong;Hwang, Ju Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.447-452
    • /
    • 2014
  • This paper presents the effects of pulse plasma parameters such as duty cycle and pulse frequency on the properties of TiAlN coatings deposited by asymmetric bipolar pulsed DC magnetron sputtering systems. The results show that, with decreasing duty cycle and increasing pulse frequency, the coating morphology changes from a columnar structure to a dense structure with finer grains. Pulsed sputtered TiAlN coatings showed higher hardness, higher residual stress, and smaller grain sizes than did DC prepared TiAlN coatings. Moreover, residual stress and nanoindentation hardness of pulsed sputtered TiAlN coatings increased with increasing pulse frequency. Meanwhile, the surface roughness decreased continuously with increasing pulsed DC frequency up to 50 kHz.

Effect of Pulse and Pulse-Reverse Current on Surface Morphology and Resistivity of Electrodeposited Copper (정펄스 및 역펄스 방법을 이용하여 구리 전해도금 시 전착층의 표면 형상과 고유저항에 미치는 효과)

  • Woo, Tae-Gyu;Park, Il-Song;Seol, Kyeong-Won
    • Korean Journal of Materials Research
    • /
    • v.17 no.1
    • /
    • pp.56-59
    • /
    • 2007
  • Recently, requirement for the ultra thin copper foil increases with smaller and miniaturized electronic components. In this study, we evaluated the surface morphology, crystal phase ana surface roughness of the copper film electrodeposited by pulse method without using additives. Homogeneous and dense copper crystals were formed on the titanium substrate, and the optimum condition was 25% duty cycle. Moreover, the surface roughness(Ra), $0.295{\mu}m$, is the smallest value in this condition. It is thought that this copper foil is good for electromigration inhibition due to the preferential crystal growth of Cu (111)

Crystal Structure, Microstructure and Mechanical Properties of NbN Coatings Deposited by Asymmetric Bipolar Pulsed DC Sputtering

  • Chun, Sung-Yong;Im, Hyun-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.33-37
    • /
    • 2017
  • Single phase niobium nitride (NbN) coatings were deposited using asymmetric bipolar pulsed dc sputtering by varying pulse frequency and duty cycle of pulsed plasmas. Crystal structure, microstructure, morphology and mechanical properties were examined using XRD, FE-SEM, AFM and nanoindentation. Upon increasing pulse frequencies and decreasing duty cycles, the coating morphology was changed from a pyramidal-shaped columnar structure to a round-shaped dense structure with finer grains. Asymmetric bipolar pulsed dc sputtered NbN coatings deposited at pulse frequency of 25 kHz is characterized by higher hardness up to 17.4 GPa, elastic modulus up to 193.9 GPa, residual compressive stress and a smaller grain size down to 27.5 nm compared with dc sputtered NbN coatings at pulse frequency of 0 kHz. The results suggest that the asymmetric bipolar pulsed dc sputtering technique is very beneficial to reactive deposition of transition-metal nitrides such as NbN coatings.

The Deposition and Properties of Surface Textured ZnO:Al Films (표면 텍스쳐된 ZnO:Al 투명전도막 증착 및 특성)

  • 유진수;이정철;김석기;윤경훈;박이준;이준신
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.378-382
    • /
    • 2003
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCI (0.5%) to examine the electrical and surface morphology properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure md the substrate temperature. In low pressures (0.9mTorr) and high substrate temperatures ($\leq$$300^{\circ}C$), the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.

The fabrication and properties of surface textured ZnO:Al films (Surface Textured ZnO:Al 투명전도막 제작 및 특성)

  • 유진수;이정철;강기환;김석기;윤경훈;송진수;박이준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.391-394
    • /
    • 2002
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCl (0.5%) to examine the electrical and surface morphology Properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure and the substrate temperature. In low pressures (0.9 mTorr) and high substrate temperatures ($\leq$30$0^{\circ}C$), the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.

  • PDF