• Title/Summary/Keyword: dense concrete

Search Result 127, Processing Time 0.034 seconds

Effect of Asphalt Pavement Conditions on Tensile Adhesive Strength of Waterproofing System on Concrete Bridge Deck (아스팔트 포장 조건이 교면방수 시스템의 인장접착강도에 미치는 영향)

  • 이병덕;박성기;김광우;정해문
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.299-304
    • /
    • 2003
  • In this research, eight waterproofing membranes were selected from commercial market and the tensile adhesive characteristics of the waterproofing system (WPS) on concrete bridge deck were investigated in view of various factor in asphalt pavement. Tensile adhesive strength (TAS) test of different asphalt pavement types showed that TAS of WPS under SMA (Stone Mastic Asphalt) pavement was greater than that under dense asphalt pavement. Tensile adhesive strength (TAS) of sheet membranes was improved as the compaction temperature of asphalt concrete increase, but TAS of liquid membranes were not. TAS of sheet membranes after wheel tracking test were in the order of the sites under wheel path (UWP), before wheel tracking (BWT) and nearby wheel path (NWP), Since TAS of the same WPS of UWP was higher than TAS of BWT, wheel loading had function of pressing WPS resulting in higher adhesive strength, But liquid membranes were variable on types, The feature of detached interface after T AS test showed that sheet types were all detached in between deck concrete and WPS, and liquid types were detached in between asphalt pavement and WPS,

  • PDF

Transfer learning for crack detection in concrete structures: Evaluation of four models

  • Ali Bagheri;Mohammadreza Mosalmanyazdi;Hasanali Mosalmanyazdi
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.163-175
    • /
    • 2024
  • The objective of this research is to improve public safety in civil engineering by recognizing fractures in concrete structures quickly and correctly. The study offers a new crack detection method based on advanced image processing and machine learning techniques, specifically transfer learning with convolutional neural networks (CNNs). Four pre-trained models (VGG16, AlexNet, ResNet18, and DenseNet161) were fine-tuned to detect fractures in concrete surfaces. These models constantly produced accuracy rates greater than 80%, showing their ability to automate fracture identification and potentially reduce structural failure costs. Furthermore, the study expands its scope beyond crack detection to identify concrete health, using a dataset with a wide range of surface defects and anomalies including cracks. Notably, using VGG16, which was chosen as the most effective network architecture from the first phase, the study achieves excellent accuracy in classifying concrete health, demonstrating the model's satisfactorily performance even in more complex scenarios.

Development of Low Permeable Concrete for the Control of Deterioration in Underground Structures (지하구조물의 열화방지를 위한 수밀성 콘크리트의 개발)

  • Paik, S.H.;Park, S.S.;Park, J.Y.;Paik, W.J.;Um, T.S.;Choi, L.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.191-196
    • /
    • 1999
  • In underground reinforced concrete structures, such as drainage structure, water and chloride ion penetrated into concrete through the cracks of concrete and its permeable property, cause the corrosion of reinforcing steel bar, which accelerates the expansive cracks and deterioration of concrete. It is necessary to control those deterioration of underground structure by improving its permeability and durability through the reasonable solutions in design, construction and materials. In the present study, fly ash concrete, which has good material properties in long-term period, is compared and studied with plain concrete using ordinary portland cement in terms of fundamental mechanical properties, permeability, drying shrinkage and durability. Also, the mix design and its properties of low permeable concrete using fly ash are reviewed. From this study, fly ash concrete can conctrol the penetration of water and chloride ion effectively by forming dense microstructure of concrete. Therefore, fly ash concrete may increase the long-term function, performance and serviceability of underground structures.

  • PDF

The structural behavior of lightweight concrete buildings under seismic effects

  • Yasser A.S Gamal;Mostafa Abd Elrazek
    • Coupled systems mechanics
    • /
    • v.12 no.4
    • /
    • pp.315-335
    • /
    • 2023
  • The building sector has seen a huge increase in the use of lightweight concrete recently, which might result in saving in both cost and time. As a result, the study has been done on various types of concrete, including lightweight (LC), heavyweight (HC), and ordinary concrete (OC), to understand how they react to earthquake loads. The comparisons between their responses have also been taken into account in order to acquire the optimal reaction for various materials in building work. The findings demonstrate that LWC building models are more earthquake-resistant than the other varieties due to the reduction in building weight which can be a curial factor in the resistance of earthquake forces. Another crucial factor that was taken into study is the combination of various types of concrete [HC, LC, and OC] in the structural components. On the other hand, the bending moments and shear forces of LC had reduced to 17% and 19%, respectively, when compared to OC. Otherwise, the bending moment and shear force demand responses in the HC model reach their maximum values by more than 34% compared to the reference model OC. In addition, the results show that the LCC-OCR (light concrete column and ordinary concrete roof) and OCC-LCR (ordinary concrete for the column and light concrete for the roof) models' responses have fewer values than the other types.

Evaluation of Physical Performance of High-Strength.High Waterproof Ready-mixed Shotcrete using Powdered Polymer Dispersion (분말형 폴리머 혼화제를 적용한 고강도.고차수성 레디믹스트 숏크리트의 물리적 성능 평가)

  • Ma, Sang-Joon;Choi, Hee-Sup;Lee, Heung-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.337-340
    • /
    • 2008
  • As the Ready-mixed Shotcrete using Powdered Polymer Dispersion, Shotcrete Matrix as totally shotcrete gel that a part of second binder in Shotcrete materials is dense. Also, Ready-mixed Shotcrete is showed the decreasing Rebound and rising Durability. Therefore, it is possible that Ready-mixed Shotcrete for High-Strength and High-Waterproof can apply to the Powdered Polymer Dispersion.

  • PDF

An Theoretical study on Spalling Mechanism of Concrete (콘크리트 폭렬발생 메카니즘에 관한 이론적 고찰)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Kim, Gyeong-Ok
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.422-427
    • /
    • 2008
  • The major cause of Concrete Spalling at high temperatures can be divided into the Vapor Pressure Rising, caused by the increase in free water temperature within the concrete, and Pore Pressure Rising induced by the vapor moving into dense pores within the concrete. Although the occurrence of spalling within concrete caused by these pressure increases can be assessed experimentally, a close examination into Mechanistic influence against various spalling factors shall be carried out first by using Mathematical Modeling and Theoretical Equations. The Spalling Prospect Process by theoretical mechanism is expedited in order of the following; selection of heating condition (fire strength and flame heating direction), a selection of constituent elements, an analysis of heat transmission, an analysis of moisture movement, distribution of water content, an analysis of pore/vapor pressure, and assessment of spalling occurrence.

  • PDF

A Study on the Properties of Noise Reduction on the Exposed Aggregate Concrete (골재노출 콘크리트의 소음 저감 특성에 대한 연구)

  • 문한영;하상욱;양은철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.119-124
    • /
    • 2002
  • Generally, Portland cement concrete(PCC) pavements have the advantage of durability and superior surface friction when compared to most dense-graded asphalt. However, It is known that PCC pavements create more noise than asphaltic surfaces due to the noise from interaction of tire and pavement surface. Recently exposed aggregate concrete(EAC) pavement was sugested to reduce traffic noise. So in this paper, we considered several materials and mixture proportions for proper depth of exposed aggregate which was measured by the sand patching test, and then according to those relationships, we tried to find out dosage of retarding agents and optimum mixture proportions for expecting good effects to noise reduction. It were also evaluated sound level at every conditions of surface texture as like depth of aggregate exposed, profile peak, distance of aggregate and types of aggregate.

  • PDF

An Experimental Study on the Characteristics and Lateral Pressure of Super-Workable Concrete (초유동 콘트리트의 재료적 특성과 거푸집 측압에 관한 실험적 연구)

  • 이준구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.1
    • /
    • pp.83-91
    • /
    • 2000
  • The purpose of this study is to estimate quantitatively lateral pressure of super-workable fresh concrete applied to form-work of prototype structures, such as tall wall, retaining wall and beam. As a result of this experiment, a function applicable to design a form work system and to predict lateral pressure curve is formulated . Super-workable concrete may be used for the structures reinforced with dense re-bar like box culvert to place concrete at a time, and this study for lateral pressure of super-workable concrete may be useful for form design.

  • PDF

Evaluation on Water Vapor Pressure and Restrained Stress of Concrete by Ring-Type Restrained Condition (링형 강관 구속 조건에 의한 콘크리트의 수증기압력과 구속응력 평가)

  • Kim, Do-Yeon;Kim, Gyu-Yong;Lee, Sang-Kyu;Son, Min-Jae;Baek, Jae-Wook;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.27-28
    • /
    • 2018
  • In this study, water vapor pressure and restrained stress were evaluated by ring-type restrained condition for compressive strength 60 and 80MPa concrete. Experimental results show that the 80MPa concrete has higher water vapor pressure and restraint stress than the 60MPa concrete, resulting in spalling occurrence. It is because, the higher the compressive strength of the concrete, the more dense the internal structure is formed.

  • PDF

Spalling Properties of High-Performance Concrete with the Kinds of Admixture and Polypropylene Fiber Contents (혼화재 종류 및 폴리프로필렌 섬유의 혼입률 변화에 따른 고성능 콘크리트의 폭열 특성)

  • Han, Cheon-Goo;Yang, Seong-Hwan;Lee, Byung-Yul;Hwang, Yin-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.85-92
    • /
    • 2000
  • Recently. there has been steadily applied in high-performance concrete using powder type admixture in construction field. It has been reported that high-performance concrete is likely to cause the spalling by fire more seriously due to the dense microstructure. In this paper, spalling properties of high-performance concrete with the kinds of admixture and polypropylene(PP) fiber contents are presented. According to the experimental results concrete contained no PP fiber take place in the form of the surface spalling, regardless of admixture. Concrete contained more than 0.05% of PP fiber and admixture do not take place the spalling, however the concrete using silica fume do spalling. Concrete using blast furnace slag have good performance in spalling resistance. It is found that residual compressive strength has 60~70% of its original strength when spalling do not occur. Although specimens after exposed at high temperature are cured at water for 28days, they do not recover their original strength.

  • PDF