• 제목/요약/키워드: dense BE-algebra

검색결과 6건 처리시간 0.022초

CLOSED AND DENSE ELEMENTS OF BE-ALGEBRAS

  • Prabhakar, M.Bala;Vali, S.Kalesha;Sambasiva Rao., M.
    • 충청수학회지
    • /
    • 제32권1호
    • /
    • pp.53-67
    • /
    • 2019
  • The notions of closed elements and dense elements are introduced in BE-algebras. Characterization theorems of closed elements and closed filters are obtained. The notion of dense elements is introduced in BE-algebras. Dense BE-algebras are characterized with the help of maximal filters and congruences. The concept of D-filters is introduced in BE-algebras. A set of equivalent conditions is derived for every D-filter to become a closed filter.

ON HOMOMORPHISMS ON $C^*$-ALGEBRAS

  • Cho, Tae-Geun
    • 대한수학회보
    • /
    • 제22권2호
    • /
    • pp.89-93
    • /
    • 1985
  • One of the most important problems in automatic continuity theory is to solve the question of continuity of an algebra homomorphism from a Banach algebra into a semisimple Banach algebra with dense range. Many results on this subject are obtained imposing some conditions on the domains or the ranges of homomorphisms. For most recent results and references in automatic continuity theory one may refer to [1], [4] and [5]. In this note we study some properties of homomorphisms from $C^{*}$-algebras into Banach algebras. It is shown that the range of an isomorphism from a $C^{*}$-algebra into a Banach algebra contains no non zero element of the radical of B. Using this result we show that the same holds for a continuous homomorphism, hence a Banach algebra which is the image of a $C^{*}$-algebra under a continuous homomorphism is necessarily semisimple. Thus if there is a homomorphism from a $C^{*}$-algebra onto a non-semisimple Banach algebra it must be discontinuous. Also it follows that every non zero homomorphism from a $C^{*}$-algebra into a radical algebra is discontinuous. Then we make a brief observation on the behavior of quasinilpotent element of noncommutative $C^{*}$-algebras in relation with continuous homomorphisms.momorphisms.

  • PDF

CONTINUITY OF HOMOMORPHISMS BETWEEN BANACH ALGEBRAS

  • Cho, Tae-Geun
    • 대한수학회보
    • /
    • 제20권2호
    • /
    • pp.71-74
    • /
    • 1983
  • The problems of the continuity of homomorphisms between Banach algebras have been studied widely for the last two decades to obtain various fruitful results, yet it is far from characterizing the calss of Banach algebras for which each homomorphism from a member of the class into a Banach algebra is conitnuous. For commutative Banach algebras A and B a simple proof shows that every homomorphism .theta. from A into B is continuous provided that B is semi-simple, however, with a non semi-simple Banach algebra B examples of discontinuous homomorphisms from C(K) into B have been constructed by Dales [6] and Esterle [7]. For non commutative Banach algebras the problems of automatic continuity of homomorphisms seem to be much more difficult. Many positive results and open questions related to this subject may be found in [1], [3], [5] and [8], in particular most recent development can be found in the Lecture Note which contains [1]. It is well-known that a$^{*}$-isomorphism from a $C^{*}$-algebra into another $C^{*}$-algebra is an isometry, and an isomorphism of a Banach algebra into a $C^{*}$-algebra with self-adjoint range is continuous. But a$^{*}$-isomorphism from a $C^{*}$-algebra into an involutive Banach algebra is norm increasing [9], and one can not expect each of such isomorphisms to be continuous. In this note we discuss an isomorphism from a commutative $C^{*}$-algebra into a commutative Banach algebra with dense range via separating space. It is shown that such an isomorphism .theta. : A.rarw.B is conitnuous and maps A onto B is B is semi-simple, discontinuous if B is not semi-simple.

  • PDF

AUTOMATIC CONTINUITY OF HOMOMORPHIMS FROM BANACH ALGEBRAS

  • Kim, Gil-Tae
    • Journal of applied mathematics & informatics
    • /
    • 제4권1호
    • /
    • pp.273-278
    • /
    • 1997
  • Let A be a Banach algebra and B a semisimple annifilator Banach algebra. Then every homomorphism from A into B with range is continuous. Also we obtain condition s for the automatic continuity of homomorphism with dense range.

FULL SPECTRUM PRESERVING LINEAR MAPPING BETWEEN STLICTLY DENSE BANACH ALGEBRAS

  • Lee, Young-Whan;Park, Kyoo-Hong
    • Journal of applied mathematics & informatics
    • /
    • 제6권1호
    • /
    • pp.303-307
    • /
    • 1999
  • Let A and B be two strictly dense Banach Algebras on X and Y respectively where X and Y are Banach space. We give some conditions under which full spectrum preserving linear mappings from A into B Jordan morphisms and X is homomorphic to Y.

ON UNBOUNDED SUBNOMAL OPERATORS

  • Jin, Kyung-Hee
    • 대한수학회보
    • /
    • 제30권1호
    • /
    • pp.65-70
    • /
    • 1993
  • In this paper we will extend some notions of bounded linear operators to some unbounded linear operators. Let H be a complex separable Hilbert space and let B(H) denote the algebra of bounded linear operators. A closed densely defind linear operator S in H, with domain domS, is called subnormal if there is a Hilbert space K containing H and a normal operator N in K(i.e., $N^{*}$N=N $N^*/)such that domS .subeq. domN and Sf=Nf for f .mem. domS. we will show that the Radjavi and Rosenthal theorem holds for some unbounded subnormal operators; if $S_{1}$ and $S_{2}$ are unbounded subnormal operators on H with dom $S_{1}$= dom $S^{*}$$_{1}$ and dom $S_{2}$=dom $S^{*}$$_{2}$ and A .mem. B(H) is injective, has dense range and $S_{1}$A .coneq. A $S^{*}$$_{2}$, then $S_{1}$ and $S_{2}$ are normal and $S_{1}$.iden. $S^{*}$$_{2}$.2}$.X>.

  • PDF