• 제목/요약/키워드: dendritic cell (DC)

검색결과 105건 처리시간 0.025초

Up-Regulation of RANK Expression via ERK1/2 by Insulin Contributes to the Enhancement of Osteoclast Differentiation

  • Oh, Ju Hee;Lee, Na Kyung
    • Molecules and Cells
    • /
    • 제40권5호
    • /
    • pp.371-377
    • /
    • 2017
  • Despite the importance of the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-RANK signaling mechanisms on osteoclast differentiation, little has been studied on how RANK expression is regulated or what regulates its expression during osteoclastogenesis. We show here that insulin signaling increases RANK expression, thus enhancing osteoclast differentiation by RANKL. Insulin stimulation induced RANK gene expression in time- and dose-dependent manners and insulin receptor shRNA completely abolished RANK expression induced by insulin in bone marrow-derived monocyte/macrophage cells (BMMs). Moreover, the addition of insulin in the presence of RANKL promoted RANK expression. The ability of insulin to regulate RANK expression depends on extracellular signal-regulated kinase 1/2 (ERK1/2) since only PD98059, an ERK1/2 inhibitor, specifically inhibited its expression by insulin. However, the RANK expression by RANKL was blocked by all three mitogen-activated protein (MAP) kinases inhibitors. The activation of RANK increased differentiation of BMMs into tartrate-resistant acid phosphatase-positive ($TRAP^+$) osteoclasts as well as the expression of dendritic cell-specific transmembrane protein (DC-STAMP) and d2 isoform of vacuolar ($H^+$) ATPase (v-ATPase) Vo domain (Atp6v0d2), genes critical for osteoclastic cell-cell fusion. Collectively, these results suggest that insulin induces RANK expression via ERK1/2, which contributes to the enhancement of osteoclast differentiation.

Immune cell-derived small extracellular vesicles in cancer treatment

  • Choi, Sung-Jin;Cho, Hanchae;Yea, Kyungmoo;Baek, Moon-Chang
    • BMB Reports
    • /
    • 제55권1호
    • /
    • pp.48-56
    • /
    • 2022
  • Small extracellular vesicles (sEVs) secreted by most cells carry bioactive macromolecules including proteins, lipids, and nucleic acids for intercellular communication. Given that some immune cell-derived sEVs exhibit anti-cancer properties, these sEVs have received scientific attention for the development of novel anti-cancer immunotherapeutic agents. In this paper, we reviewed the latest advances concerning the biological roles of immune cell-derived sEVs for cancer therapy. sEVs derived from immune cells including dendritic cells (DCs), T cells, natural-killer (NK) cells, and macrophages are good candidates for sEV-based cancer therapy. Besides their role of cancer vaccines, DC-shed sEVs activated cytotoxic lymphocytes and killed tumor cells. sEVs isolated from NK cells and chimeric antigen receptor (CAR) T cells exhibited cytotoxicity against cancer cells. sEVs derived from CD8+ T and CD4+ T cells inhibited cancer-associated cells in tumor microenvironment (TME) and activated B cells, respectively. M1-macrophage-derived sEVs induced M2 to M1 repolarization and also created a pro-inflammatory environment. Hence, these sEVs, via mono or combination therapy, could be considered in the treatment of cancer patients in the future. In addition, sEVs derived from cytokine-stimulated immune cells or sEV engineering could improve their anti-tumor potency.

자외선 B 조사 마우스에서 피부손상에 대한 분죽 (Phyllostachys nigra var. henenis Strapf)잎 추출물의 효과 (The Effect of Bamboo (Phyllostachys nigra var. henenis Strapf) Leaf Extract on Ultraviolet B-induced Skin Damages in Mouse)

  • 채세림;이해준;문창종;김종춘;배춘식;강성수;장종식;조성기;김성호
    • Journal of Radiation Protection and Research
    • /
    • 제32권2호
    • /
    • pp.65-69
    • /
    • 2007
  • SKH1-hr 및 ICR 마우스에서 자외선 B(UVB) 조사에 의한 피부 일광화상세포(SBC) 및 ATPase 양성 표피 가지세포(DC)의 변화에 대한 대나무(분죽, Phyllostachys nigra var. henenis Strapf) 잎 추출물 (BLE)의 효과를 관찰하였다. 실험동물은 UVB ($200mJ/cm^2$) 조사 후 24시간에 희생시켰으며, BLE는 체중 kg당 50 mg의 용량으로 자외선 조사전 36시간, 12시간 및 조사 후 30분에 3회 복강내 주사하였다. 피부도포군은 0.2%의 용량으로 BLE 크림을 제조하고 자외선 조사전 24시간, 15분 및 조사후 즉시, 총 3회 도포하였다. 정상대조군 등쪽 피부에서는 길이 cm당 0.3개의 SBC가 관찰되었고, 자외선 조사에 따라 급격히 증가하였다. BLE 복강내 주사군(59.0%) 및 피부도포군(31.8%)에서 UVB에 의한 SBC의 발생은 유의성 있게 감소하였다. 정상대조군에서 귀등쪽 피부의 DC수는 $mm^2$$628.00{\pm}51.56$ 또는 $663.20{\pm}62.58$개 였으며, UVB 조사후 1일에 복강내 부영제 투여군에서는 39.0%, 부영제 피부 도포군에서는 27.1%감소하였다. 자외선 B조사에 의한 DC의 감소는 부영제를 처리한 UVB 조사군에 비하여, BLE 복강내 투여군에서는 25.7%, 피부도포군에서는 3.2%의 감소억제 효과를 나타냈다. 이상의 결과에서 BLE 투여가 UVB에의한 피부손상을 경감시킴을 알 수 있었다.

학술 4 - 면역기구(免疫機構)의 재음미(再吟味) (SCIENCE - Overview of the Immune System)

  • 김우호
    • 대한수의사회지
    • /
    • 제48권3호
    • /
    • pp.177-191
    • /
    • 2012
  • 2011년도 Nobel 생리(生理) 의학상(醫學賞) : 자연(自然)(선천)(先天) 면역(免疫)(innate immunity)의 활성화에 관한 연구업적으로 B. A. Beutler와 J. A. Hoffmann, 그리고 수지상세포(樹枝狀細胞)(dendritic cell; DC)발견과 적응(適應)(획득)(獲得)면역(免疫)(adaptive immunity)에 있어서의 그들 세포의 역할을 밝혀낸 R. M. Steinman의 공동수상으로 금년도 Nobel 생리 의학상 수상자가 결정되었다는 보도가 지난 10월 3일 있었다(1-3). 그들의 업적을 요약하면 대략 다음과 같다. (Steinman교수는 Nobel수상자 발표 3일전인 9월 30일 암으로 사망함). 그들은 면역기구(immune system)의 활성화의 관건(key)이 되는 원리를 밝혀냄으로써, 면역기구에 관한 우리들의 이해를 혁신하였던 것이다. 과학자들은 오랫동안 세균(bacteria)이나 기타 미생물병원체들에 의한 공격에 대비하여 그들 자신을 방어하는 사람이나 기타 동물체에서의 면역응답(免疫應答)(immune response)의 문지기들을 탐색해 왔다. Beutler와 Hoffmann은 그와 같은 병원미생물을 인식하여 생체의 면역응답의 첫 단계인 자연면역을 활성화 할 수 있는 수용체 단백질(toll-like receptor protein)을 규명한 것이다(4,5). 한편 Steinmann은 면역계의 수지상세포(DC)와 병원미생물이 생체로부터 배제되는 면역응답의 후기단계인 적응면역을 활성화하고 조절하는 그들의 독특한 재능을 규명해 낸 것이다(6-8). 그들 3명의 발명은, 면역응답의 자연 및 적응 양상(樣相)이 어떻게 활성화되는 가를 밝혀냄으로써 질병의 기전에 관한 참신한 식견(識見)을 제공한 것이다. 그들의 연구는 감염병(感染病)(infectious disease), 암(癌)(cancer) 그리고 염증성질환(炎症性疾患)(inflammatory disease)에 대응하는 예방과 치료의 개발을 위한 새로운 방법을 개척한 것이다.

  • PDF

Enhanced Rg3 negatively regulates Th1 cell responses

  • Cho, Minkyoung;Choi, Garam;Shim, Inbo;Chung, Yeonseok
    • Journal of Ginseng Research
    • /
    • 제43권1호
    • /
    • pp.49-57
    • /
    • 2019
  • Background: Korean Red Ginseng (KRG; Panax ginseng Meyer) is a widely used medicinal herb known to exert various immune modulatory functions. KRG and one of its purified components, ginsenoside Rg3, are known to possess anti-inflammatory activities. How they impact helper T cell-mediated responses is not fully explored. In this study, we attempted to evaluate the effect of KRG extract (KRGE) and ginsenoside Rg3 on Th1 cell responses. Methods: Using well-characterized T cell in vitro differentiation systems, we examined the effects of KRGE or enhanced Rg3 on the Th1-inducing cytokine production from dendritic cells (DC) and the naïve $CD4^+$ T cells differentiation to Th1 cells. Furthermore, we examined the change of Th1 cell population in the intestine after treatment of enhanced Rg3. The influence of KRGE or enhanced Rg3 on Th1 cell differentiation was evaluated by fluorescence-activated cell sorting, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction. Results: KRGE significantly inhibited the production level of IL-12 from DCs and subsequent Th1 cell differentiation. Similarly, enhanced Rg3 significantly suppressed the expression of interferon gamma ($IFN{\gamma}$) and T-bet in T cells under Th1-skewing condition. Consistent with these effects in vitro, oral administration of enhanced Rg3 suppressed the frequency of Th1 cells in the Peyer's patch and lamina propria cells in vivo. Conclusion: Enhanced Rg3 negatively regulates the differentiation of Th1 cell in vitro and Th1 cell responses in the gut in vivo, providing fundamental basis for the use of this agent to treat Th1-related diseases.

Enhancing T Cell Immune Responses by B Cell-based Therapeutic Vaccine Against Chronic Virus Infection

  • Kim, Min Ki;Lee, Ara;Hwang, Yu Kyeong;Kang, Chang-Yuil;Ha, Sang-Jun
    • IMMUNE NETWORK
    • /
    • 제14권4호
    • /
    • pp.207-218
    • /
    • 2014
  • Chronic virus infection leads to the functional impairment of dendritic cells (DCs) as well as T cells, limiting the clinical usefulness of DC-based therapeutic vaccine against chronic virus infection. Meanwhile, B cells have been known to maintain the ability to differentiate plasma cells producing antibodies even during chronic virus infection. Previously, ${\alpha}$-galactosylceramide (${\alpha}GC$) and cognate peptide-loaded B cells were comparable to DCs in priming peptide-specific $CD8^+$ T cells as antigen presenting cells (APCs). Here, we investigated whether B cells activated by ${\alpha}GC$ can improve virus-specific T cell immune responses instead of DCs during chronic virus infection. We found that comparable to B cells isolated from naïve mice, chronic B cells isolated from chronically infected mice with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13) after ${\alpha}GC$-loading could activate CD1d-restricted invariant natural killer T (iNKT) cells to produce effector cytokines and upregulate co-stimulatory molecules in both naïve and chronically infected mice. Similar to naïve B cells, chronic B cells efficiently primed LCMV glycoprotein (GP) 33-41-specific P14 $CD8^+$ T cells in vivo, thereby allowing the proliferation of functional $CD8^+$ T cells. Importantly, when ${\alpha}GC$ and cognate epitope-loaded chronic B cells were transferred into chronically infected mice, the mice showed a significant increase in the population of epitope-specific $CD8^+$ T cells and the accelerated control of viremia. Therefore, our studies demonstrate that reciprocal activation between ${\alpha}GC$-loaded chronic B cells and iNKT cells can strengthen virus-specific T cell immune responses, providing an effective regimen of autologous B cell-based therapeutic vaccine to treat chronic virus infection.

Treatment of Autoimmune Diabetes by Inhibiting the Initial Event

  • Lee, Myung-Shik
    • IMMUNE NETWORK
    • /
    • 제13권5호
    • /
    • pp.194-198
    • /
    • 2013
  • Recent papers have shown that the initial event in the pathogenesis of autoimmune type 1 diabetes (T1D) comprises sensing of molecular patterns released from apoptotic ${\beta}$-cells by innate immune receptors such as toll-like receptor (TLR). We have reported that apoptotic ${\beta}$-cells undergoing secondary necrosis called 'late apoptotic' ${\beta}$-cells stimulate dendritic cells (DCs) and induce diabetogenic T cell priming through TLR2. The role of other innate immune receptors such as TLR7 or TLR9 in the initiation of T1D has also been suggested. We hypothesized that TLR2 blockade could inhibit T1D at the initial step of T1D. Indeed, when a TLR2 agonist, $Pam3CSK_4$ was administered chronically, the development of T1D in nonobese diabetic (NOD) mice was inhibited. Diabetogenic T cell priming by DCs was attenuated by chronic treatment with $Pam3CSK_4$, indicating DC tolerance. For the treatment of established T1D, immune tolerance alone is not enough because ${\beta}$-cell mass is critically reduced. We employed TLR2 tolerance in conjunction with islet transplantation, which led to reversal of newly established T1D. Dipeptidyl peptidase 4 (DPP4) inhibitors are a new class of anti-diabetic agents that have beneficial effects on ${\beta}$-cells. We investigated whether a combination of DPP4 inhibition and TLR2 tolerization could reverse newly established T1D without islet transplantation. We could achieve normoglycemia by TLR2 tolerization in combination with DPP4 inhibition but not by TLR2 tolerization or DPP4 inhibition alone. ${\beta}$-cell mass was significantly increased by combined treatment with TLR2 tolerization and DPP4 inhibition. These results suggest the possibility that a novel strategy of TLR tolerization will be available for the inhibition or treatment of established T1D when combined with measures increasing critically reduced ${\beta}$-cell mass of T1D patients such as DPP4 inhibition or stem cell technology.

Common and differential effects of docosahexaenoic acid and eicosapentaenoic acid on helper T-cell responses and associated pathways

  • Lee, Jaeho;Choi, Yu Ri;Kim, Miso;Park, Jung Mi;Kang, Moonjong;Oh, Jaewon;Lee, Chan Joo;Park, Sungha;Kang, Seok-Min;Manabe, Ichiro;Ann, Soo-jin;Lee, Sang-Hak
    • BMB Reports
    • /
    • 제54권5호
    • /
    • pp.278-283
    • /
    • 2021
  • Our understanding of the differential effects between specific omega-3 fatty acids is incomplete. Here, we aimed to evaluate the effects of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on T-helper type 1 (Th1) cell responses and identify the pathways associated with these responses. Naïve CD4+ T cells were co-cultured with bone marrow-derived dendritic cells (DCs) in the presence or absence of palmitate (PA), DHA, or EPA. DHA or EPA treatment lowered the number of differentiated IFN-γ-positive cells and inhibited the secretion of IFN-γ, whereas only DHA increased IL-2 and reduced TNF-α secretion. There was reduced expression of MHC II on DCs after DHA or EPA treatment. In the DC-independent model, DHA and EPA reduced Th1 cell differentiation and lowered the cell number. DHA and EPA markedly inhibited IFN-γ secretion, while only EPA reduced TNF-α secretion. Microarray analysis identified pathways involved in inflammation, immunity, metabolism, and cell proliferation. Moreover, DHA and EPA inhibited Th1 cells through the regulation of diverse pathways and genes, including Igf1 and Cpt1a. Our results showed that DHA and EPA had largely comparable inhibitory effects on Th1 cell differentiation. However, each of the fatty acids also had distinct effects on specific cytokine secretion, particularly according to the presence of DCs.

PI3K and ERK signaling pathways are involved in differentiation of monocytic cells induced by 27-hydroxycholesterol

  • Son, Yonghae;Kim, Bo-Young;Park, Young Chul;Eo, Seong-Kug;Cho, Hyok-rae;Kim, Koanhoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권3호
    • /
    • pp.301-308
    • /
    • 2017
  • 27-Hydroxycholesterol induces differentiation of monocytic cells into mature dendritic cells, mDCs. In the current study we sought to determine roles of the PI3K and the ERK pathways in the 27OHChol-induced differentiation. Up-regulation of mDC-specific markers like CD80, CD83 and CD88 induced by stimulation with 27OHChol was significantly reduced in the presence of LY294002, an inhibitor of PI3K, and U0126, an inhibitor of ERK. Surface expression of MHC class I and II molecules elevated by 27OHChol was decreased to basal levels in the presence of the inhibitors. Treatment with LY294002 or U0126 resulted in recovery of endocytic activity which was reduced by 27OHChol. CD197 expression and cell adherence enhanced by 27OHChol were attenuated in the presence of the inhibitors. Transcription and surface expression of CD molecules involved in atherosclerosis such as CD105, CD137 and CD166 were also significantly decreased by treatment with LY294002 and U0126. These results mean that the PI3K and the ERK signaling pathways are necessary for differentiation of monocytic cells into mDCs and involved in over-expression of atherosclerosis-associated molecules in response to 27OHChol.

B Cells Transduced with HPV16 E6/E7-expressing Adenoviral Vector Can Efficiently Induce CTL-dependent Anti-Tumor Immunity

  • Kim, Yun-Sun;Ko, Hyun-Jeong;Kim, Yeon-Jeong;Han, Seung-Hee;Lee, Jung-Mi;Chang, Woo-Sung;Jin, Hyun-Tak;Sung, Young-Chul;Kang, Chang-Yuil
    • IMMUNE NETWORK
    • /
    • 제7권3호
    • /
    • pp.109-116
    • /
    • 2007
  • Background: Human papillomavirus (HPV) infection is responsible for cervical cancer, a common cancer in women. Since HPV infection and cancer development are controlled by the host immune system, immunotherapy against HPV can be helpful in preventing or treating HPV-associated cervical cancer. Two oncoproteins of HPV16, E6 and E7, are promising targets for immunotherapy against cervical cancer, because they are constitutively expressed in cervical cancer. Methods: Since cellular vaccines using B cells as well as dendritic cells offer an efficient approach to cancer immunotherapy, we opted to use B cells. We evaluated the immunogenicity and anti-tumor effects of a B cell vaccine transduced with HPV16 E6/E7-expressing adenovirus. Results: Vaccination with HPV16 E6/E7-transduced B cells induced E6/E7-specific $CD8^+$ T cell-dependent immune responses and generated anti-tumor effects against E6/E7-expressing TC-1 tumor. The anti-tumor effect induced by this B cell vaccine was similar to that elicited by DC vaccine, showing that B cells can be used as an alternative to dendritic cells for cellular vaccines. Conclusion: Thisstudy has shown the feasibility of using B cells as immunogenic APCs and the potential for developing prophylactic and therapeutic vaccines against HPV-associated cervical cancer using a B cell vaccine transduced with adenovirus expressing HPV16 E6/E7.