• Title/Summary/Keyword: denaturation kinetics

Search Result 10, Processing Time 0.024 seconds

Kinetic Measurements of Irreversible Photobleaching of Bacteriorhodopsin in A High Temperature State

  • Yokoyama, Yasunori;Sonoyama, Masashi;Mitaku, Shigeki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.296-298
    • /
    • 2002
  • Irreversible photobleaching of bacteriorhodopsin (bR), namely denaturation induced by illumination of visible light, was investigated by absorption kinetic measurements. The denaturation kinetics revealed that light illumination significantly enhanced the structural decay of bR. The kinetic analyses showed that the molecular structure of bR denatures according to a single-exponential decay, whereas irreversible photobleaching has two decay components. The decay constant of the slow component of photobleaching is almost same as that in the dark. An Arrhenius plot of the denaturation kinetic constants for the fast and slow components showed similar activation energies of approximately 19 kcal/mol.

  • PDF

Kinetics of Denaturation of Human and Chicken Hemoglobins in the Presence of Co-solvents

  • Ajloo, Davood;Moosavi-Movahedi, Ali A.
    • BMB Reports
    • /
    • v.36 no.4
    • /
    • pp.367-372
    • /
    • 2003
  • The stability of four hemoglobins (Hb) in dimer forms (low concentration) were investigated by the kinetics of denaturation. The rate constants of denaturation were obtained by variation of 280 nm absorption versus time in 10 mM Tris-HCl, 10 mM EDTA, pH 8.0 at $45^{\circ}C$ in the absence and presence of 0.5 M ethanol, dimethyl sulfoxide (DMSO), formamide, and glycerol. The results show the trend of rate constants in different co-solvents in the following order: chicken hemolysate < human hemolysate and chicken Hb D < chicken Hb A. The buried surface area was calculated for Hb samples in the absence of cosolvents. Accordingly, the trend points out that: chicken Hb D > chicken Hb A > human Hb A. These results suggest that both chicken hemolysate and chicken Hb D are relatively more stable than human and chicken Hb A, respectively. However, the denaturation rate constants of Hb in different co-solvents have designated the following order: ethanol > DMSO > formamide > glycerol. As a matter of fact, this phenomenon is an indication of an increase in the denaturation capacity (DC) and hydrophobicity, and a decrease in the surface tension of the solution in the preceding co-solvents.

Structural Stability of Bacteriorhodopsin Solubilized by Triton X-100

  • Sasaki, Takanori;Sonoyama, Masashi;Mukai, Yuri;Nakazawa, Chieko;Mitaku, Shigeki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.293-295
    • /
    • 2002
  • The structural stability of bacteriorhodopsin (bR) solubilized by Triton X-100 (TX-100) was studied by measuring the denaturation kinetics in the dark and under illumination, and compared with the structural stability of bR solubilized by octyl-${\beta}$-glucoside (OG). In the dark, bR solubilized by TX- 100 was more stable than bR solubilized by OG. Under illumination, bR solubilized by TX-100 showed light-induced denaturation in the same manner as bR solubilized by OG. These results in the dark well correlated with the experimental results of the visible CD band. Although solubilized bR in the TX-100 concentration range of 2-50 mM showed almost identical positive CD band and did not denature in the dark at 35$^{\circ}$C, the kinetic constant of the photobleaching increased with the increase of TX-100 concentration. These results suggested that photo-intermediates of solubilized bR are destabilized by TX-100 micelles.

  • PDF

Structural Stability of High-Temperature State of Bacteriorhodopsin: A Model of Multi-state Membrane Proteins

  • Mitaku, Shigeki;Yokoyama, Yasunori;Sonoyama, Masashi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.118-121
    • /
    • 2002
  • A state of bacteriorhodopsin at high temperature was studied by various spectral measurements. The stability measurements indicated that the onset temperature of the denaturation was 70$^{\circ}C$ in the dark and 60$^{\circ}C$ under illumination. The reactivity of hydroxylamine with the Schiff's base also significantly increased in the temperature range between 60 and 70$^{\circ}C$. A spectral band at about 470 nm appeared in the temperature range higher than 60$^{\circ}C$. The circular dichroism spectra in the visible region started to change from a bilobed exiton type to a positive band at about 60$^{\circ}C$, suggesting that the two-dimensional configuration of bacteriorhodopsin molecules changed from crystalline to amorphous. All the measurements suggested a new state between 60 and 70$^{\circ}C$ in which bacteriorhodopsin is stable only in the dark.

  • PDF

Analysis of Red Pepper (Capsicum annuum) Genome (고추의 게놈 분석)

  • 안정선
    • Journal of Plant Biology
    • /
    • v.39 no.1
    • /
    • pp.57-61
    • /
    • 1996
  • The genome of red pepper was investigated by thermal denaturation, reassociation kinetics and measurement of nuclear volume for its base composition, spectrum of kinetic components and genome size. Base composition was estimated to be 37% (G+C) based on melting temperature. The reassociation of 300 nt fragments analyzed by hydroxyapatite chromatography revealed the presence of three kinetic components differing in fraction of genome, kinetic complexity and number of copies as follows; 4.8% (fast) with $5.6{\times}10^{4}\;bp$ and 10,754, 26% (intermediate) with $1.9{\times}10^{6}\;bp$ and 177, and 65% (slow) with $8.48{\times}10^{8}\;bp$ and 1. These measurements demonstrate that the genome of red pepper has a 1C DNA content of $1.25{\times}10^{9}\;bp$, which is about 33% of $4.05{\times}10^{9}\;bp$ calculated from nuclear volume of $62.4\;\mu\textrm{m}^3/1C$..

  • PDF

Reduced Protein Denaturation in Thermotolerant Cells by Elevated Levels of HSP70 (열내성이 유도된 세포에서 HSP70 단백질 증가에 의한 단백질 변성 감소)

  • Han, Mi-Young;Park, Young-Mee
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.433-444
    • /
    • 1996
  • We describe a novel approach to evaluate quantitatively the amounts of denatured proteins in cells upon heat exposure. A thiol compound, diamide [azodicarboxylic acid bis (dimethylamide)] causes protein cross-linking with exposed sulfyhydryl residues of denatured proteins. Since denatured proteins expose normally well-hidden sulfhydryl groups, these will be preferentially cross-linked by diamide. Thus diamide acts to 'trap' denatured proteins. We observed that protein aggregates (high molecular weight protein aggregates, HMA) appeared on SDS-polyacrylamide gels run under non-reducing conditions and that the amount of HMA can be quantified by scanning the gels using a gas flow counter. Heating cells followed by a fixed dose of diamide exposure resulted in HMA increases in a heat-dose dependent manner, demonstrating that the quantitation of HMA could serve as a measure of heat-denatured proteins. We compared thermotolerant and nontolerant cells and found decreased HMA in tolerant cells upon heat treatment. As an attempt to examine the kinetics of protein renaturation (or 'repair'), we measured the amounts of aggregates formed by the addition of diamide at various times after heat shock. Such experiments demonstrate an equally rapid disappearance of HMA in previously unheated and in thermotolerant cells. Levels of HMA in tolerant cells increased significantly after electroporation of HSP70 specific mAbs, suggesting an involvement of HSP70 in reducing HMA levels in thermotolerant cells upon heat exposure. Immunoprecipitation studies using anti-HSP70 antibody indicated an association of HSP70 with heat-denatured proteins. Our results suggest that heat induces protein denaturation, and that elevated level of HSP70 present in thermotolerant cells protects them by reducing the level of protein denaturation rather than by facilitating the 'repair' (or degradation) process.

  • PDF

Enhancement of Hydroxylamine Reactivity of Bacteriorhodopsin at High Temperature

  • Sonoyama, Masashi;Mitaku, Shigeki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.299-301
    • /
    • 2002
  • Recent denaturation experiments of bacteriorhodopsin (bR) in the dark and under illumination at high temperatures revealed that irreversible thermal bleaching occurs above ~ 70°C and the preceding reversible structural changes in the dark above 60°C are closely related to irreversible photobleaching observed in the same temperature range (Yokoyama et al. (2002). J Biochem. 131,785). In this study, structural properties of bacteriorhodopsin (bR) at high temperatures were extensively probed by hydroxylamine reactivity with the Schiff base in the dark and hydrogen-deuterium (H-D) exchange in the peptide groups. In the Arrhenius plot from kinetics measurements of the hydroxylamine reaction, a good linear relationship between the reaction time constant and the inverse of the absolute temperature was observed below 60°C, while significant increase started above 60°C, suggesting that remarkable increase in water accessibility of the Schiff base in the temperature region. FT-IR spectroscopic studies on the H-D exchange suggested increase in the deuterium exchanges rate of the peptide hydrogen in the same temperature region.

  • PDF

Kinetics of Thermal Inactivation of Peroxidases and Polyphenol Oxidase in Pineapple (Ananas comosus)

  • Lee, Ting Hun;Chua, Lee Suan;Tan, Eddie Ti Tjih;Yeong, Christina;Lim, Chew Ching;Ooi, Siew Yin;Aziz, Ramlan bin Abdul;Aziz, Azila binti;Sarmidi, Mohd Roji bin
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.661-666
    • /
    • 2009
  • The heat tolerance and the inactivation kinetics of peroxidase (POD) and polyphenol oxidase (PPO) in pineapples (Ananas comosus) were studied in the temperature range $45-95^{\circ}C$. The kinetic parameters, such as deactivation rate constant (k), activation energy ($E_a$), and decimal reduction rate (D) of the thermal inactivation process, were determined. POD in pineapples showed biphasic inactivation behavior at temperatures range $45-75^{\circ}C$ but was monophasic at $85-95^{\circ}C$. This indicate that POD has 2 isozymes, namely heat labile and heat resistant, with $E_a$ of 68.79 and 93.23 kJ/mol, respectively. On the other hand, the heat denaturation of pineapple PPO could be described as simple monophasic first-order behavior with $E_a$ of 80.15 kJ/mol. Thus, the results of this study is useful in blanching technology where it shows a shortened time with higher temperature can be applied. The determination of the heat tolerance and inactivation POD and PPO, at different temperature range as done in the present work, was very important to improve the blanching process. This also will help to optimize the pineapple canning process which is one of the most important food industries in many tropical regions.

Cloning and Expression of Escherichia coli Ornithine Transcarbamylase Gene, argI (Escherichia coli 오르니틴 트란스카바밀라제의 유전자 argI의 클로닝 및 발현)

  • Riu, Key-Zung;U, Zang-Kual;Ko, Young-Hwan;Kim, Chan-Shik;Song, Sung-Jun;Oh, Young-Seon;Lee, Sun-Joo
    • Applied Biological Chemistry
    • /
    • v.38 no.2
    • /
    • pp.118-122
    • /
    • 1995
  • Escherichia Coli ornithine transcarbamylase is the enzyme which catalyzes the L-citrulline biosynthesis from L-ornithine and carbamyl phosphate. To facilitate the purification of enzyme which will be used for many biochemical studies such as structure and function relationships and catalytic mechanisms, the cloning and expression of E. coli argI gene for ornithine transcarbamylase was conducted. argI was amplified from genomic DNA of E. coli strain of $DH5{\alpha}$, by polymerization chain reaction (PCR) method. The amplified argI gene was ligated to the prokaryotic expression vector pKK223-3 and used for transformation of E. coli TB2 which was deficient of ornithine transcarbamylase. The over-produced enzyme by the tnansformant was purified by ammonium sulfate fractionation, heat denaturation and affinity chromatography. The result of SDS denaturation gel electrophoresis for the purified enzyme showed a single band of about 38 kDa of ornithine transcarbamylase. Kinetic data for the expressed enzyme gave almost the s?????? values as those of the wild type enzyme. The $k_{cat}$, of the enzyme was $1.0{\times}10^5min^{-1}$, and $K_ms$ for ornithine and carbamyl phosphate were 0.35 mM and 0.06 mM, respectively.

  • PDF

Alcohol Fermentation at High Temperature and the Strain-specific Characteristics Required to Endow the Thermotolerance of Sacchromyces cerevisiae KNU5377

  • Paik, Sang-Kyoo;Park, In-Su;Kim, Il-Sup;Kang, Kyung-Hee;Yu, Choon-Bal;Rhee, In-Koo;Jin, In-Gnyol
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2005.06a
    • /
    • pp.154-164
    • /
    • 2005
  • Saccharomyces cerevisiae KNU5377 is a thermotolerant strain, which can ferment ethanol from wasted papers and starch at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. This strain showed alcohol fermentation ability to convert wasted papers 200 g (w/v) to ethanol 8.4% (v/v) at 40$^{\circ}C$, meaning that 8.4% ethanol is acceptable enough to ferment in the industrial economy. As well, all kinds of starch that are using in the industry were converted into ethanol at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. Hyperthermic cell killing kinetics and differential scanning calorimetry (DSC) revealed that exponentially growing cells of this yeast strain KNU5377 were more thermotolerant than those of S. cerevisiae ATCC24858 used as a control. This intrinsic thermotolernace did not result from the stability of entire cellular components but possibly from that of a particular target. Heat shock induced similar results in whole cell DSC profiles of both strains and the accumulation of trehalose in the cells of both strains, but the trehalose contents in the strain KNU5377 were 2.6 fold higher than that in the control strain. On the contrary to the trehalose level, the neutral trehalase activity in the KNU5377 cells was not changed after the heat shock. This result made a conclusion that though the trehalose may stabilize cellular components, the surplus of trehalose in KNU5377 strain was not essential for stabilization of whole cellular components. A constitutively thermotolerant yeast, S. cerevisiae KNU5377, was compared with a relatively thermosensitive control, S. cerevisiae ATCC24858, by assaying the fluidity and proton ATPase on the plasma membrane. Anisotropic values (r) of both strains were slightly increased by elevating the incubation temperatures from 25$^{\circ}C$ to 37$^{\circ}C$ when they were aerobically cultured for 12 hours in the YPD media, implying the membrane fluidity was decreased. While the temperature was elevated up to 40$^{\circ}C$, the fluidity was not changed in the KNU5377 cell, but rather increased in the control. This result implies that the plasma membrane of the KNU5377 cell can be characterized into the more stabilized state than control. Besides, heat shock decreased the fluidity in the control strain, but not in the KNU5377 strain. This means also there's a stabilization of the plasma membrane in the KNU5377 cell. Furthermore, the proton ATPase assay indicated the KNU5377 cell kept a relatively more stabilized glucose metabolism at high temperature than the control cell. Therefore, the results were concluded that the stabilization of plasma membrane and growth at high temperature for the KNU5377 cell. Genome wide transcription analysis showed that the heat shock responses were very complex and combinatory in the KNU5377 cell. Induced by the heat shock, a number of genes were related with the ubiquitin mediated proteolysis, metallothionein (prevent ROS production from copper), hsp27 (88-fold induced remarkably, preventing the protein aggregation and denaturation), oxidative stress response (to remove the hydrogen peroxide), and etc.

  • PDF