• Title/Summary/Keyword: demethylase

Search Result 124, Processing Time 0.021 seconds

Inhibition of hepatic microsomal drug-metabolizing enzymes by imperatorin

  • Shin, Kuk-Hyun;Woo, Won-Sick
    • Archives of Pharmacal Research
    • /
    • v.9 no.2
    • /
    • pp.81-86
    • /
    • 1986
  • The effect of imperatorin on hepatic microsomal mixed function oxidases (MF0) was investigated. On acute treatment, imperatorin (30 mg/kg, i.p) caused a significant reduction in activities of hepatic aminopyrine N-demethylase, hexobarbital hydroxylase and aniline hydroxylase as well as cytochrome p0450 content in rats and mice. Kinetic studies on rat liver enzymes revealed that imperatorin appeared to be a competitive inhibitor of aminopyrine N-demethylase (Ki,0.007 mM), whereas a non-competitive inhibitor of hexobarbital hydroxylase (Ki, 0.0148 mM). Imperatorin also inhibited non-competitively aniline metabolism (Ki 0.2 mM). Imperatorin binds to phenobarbital-induced cytochrome p-450 to give a typical type 1 binding sepctrum (max. 388nm, min 422 nm). Multiple administrations of imperatorin (30 mg/kg. i. p. daily for 7 days) to mice shortended markedly the duration of hexobarbital narcosis and increased activities of hepatic aminopyrine N-demethylase and hexobarbital hydroxylase and the level of cytochrome p-450 where as aniline hydroxylase activity was unaffected.

  • PDF

Effect of Ascorbic Acid Supplementation on Hepatic Microsomal and Mitochondrial Cytochrome P450 System in Diabetic Rats (비타민 C의 보강이 당뇨쥐의 간 소포체와 미토콘드리아의 Cytochrome P450계에 미치는 영향)

  • 정연재;임은영;김해리
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.4
    • /
    • pp.682-688
    • /
    • 1997
  • This study was performed to investigate whether ascorbic acid can modulate the induction of CYP2E1 and prevent the lipid peroxidation which may cause diabetic chronic complication. Diabetes was induced by intraperitoneal injection of streptozotocin to 5-week-old male Sprague-Dawley rats(150~170g). Normal and diabetic group was randomly divided into three groups each; Control(CON, no supplementation), SUP1 (50mg/d ascorbate supplementation) and SUP2(250mg/d ascorbate supplementation). Ascobic acid was prepared daily by dissolving in drinking water and supplied for 4 weeks. There was no difference in hepatic microsomal and mitochondrial P450 contents between normal and diabetes. Hepatic microsomal N-nitrosodimethylamine(NDMA) demethylase activity, which repre-sents contents of CYP2E1, was elevated in diabetes, but not significantly. The NDMA demethylase activity of diabetic SUP2 group was significantly lower activity than that of the diabetic CON group. However, no difference in hepatic mitochondrial NDMA demethylase activity was observed between the diabetes and the normal group. The result suggests that the induction of CYP2E1 in diabetes can be alleviated by ascorbic acid supplementation at the dose of 50mg1d. In addition, ascorbic acid supplementation showed dose-dependent reduction of hepatic microsomal TBARS contents in diabetic rats.

  • PDF

The Effect of Repeated Betaine Treatment on Hepatotoxicity and Cytochrome P-450 Dependent Drug Metabolizing Enzyme System (반복적인 Betaine 투여가 간독성 및 Cytochrome P-450 의존성 약물대사효소계 활성에 주는 영향)

  • Kim, Sang-Gyeom;Kim, Yeong-Cheol
    • YAKHAK HOEJI
    • /
    • v.40 no.4
    • /
    • pp.449-455
    • /
    • 1996
  • Betaine is one of the major water-soluble components in Lycii Fructus. In the present study the effect of repeated betaine treatment on the hepatotoxicity and the cytochrome P-4 50-dependent enzyme system was examined in adult female rats. Administrations of betaine (100 or 1,000mg/kg/day, ip) to rats repeatedly for 4 or 9 days did not evoke hepatotoxic response as determined by increases in glutamic pyruvic transaminase(GPT) and glutamic oxaloacetic transaminase(GOT) activities measured 24 hours following the final dose of betaine. The activities of aminopyrine N-demethylase, p-nitroanisole O-demethylase and p-nitrophenol hydroxylase as well as the contents of cytochrome P-450 were determined in hepatic microsomes of rats treated with betaine(1,000mg/kg/day, ip) for 4 or 9 days. Repeated treatment of rats with betaine for a period of 4 days induced a marginal decrease in the contents of cytochrome P-450, but did not influence the activities of p-nitrophenol hydroxylase, p-nitroanisole O-demethylase, or aminopyrine N-demethylase. Extension of the betaine treatment to 9 consecutive days failed to alter the parameters for hepatic drug metabolizing activity determined in the present study. Since repeated large doses of betaine were demonstrated to be tolerated by rats without showing any toxicity or changes in drug metabolizing enzyme activities in the liver, this compound appears to be relatively safe to animals upon long-term ingestion.

  • PDF

Genome Sequence Analysis of Chrysanthemum White Rust pathogen Puccinia horiana and Sterol 14-demethylase as Drug Target (국화흰녹병균 Puccinia horiana 유전체 분석과 약물 표적으로서의 sterol 14-demethylase)

  • Kim, Jeong-Gu;Park, Sang Kun;Park, Ha-Seung;Kwon, Soo-Jin;Kim, Seung Hwan;Lee, Dong-Jun;Sohn, Seong-Han;Lee, Byoung Moo;Bae, Shin-Chul;Ahn, Il-Pyung;Kim, Changhoon;Baek, Jeong Hun
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.468-472
    • /
    • 2013
  • Chrysanthemum is an economically important horticultural plant in many countries. The white rust is one of the most devastating diseases caused by an obligate fungal pathogen Puccinia horiana. This is being controlled mostly by application of chemicals. In Korea, 26 items are registered and 10 items contain 6 triazole compounds. To identify and to obtain the information of the drug target for triazoles, possible sterol 14-demethylase orthologues were extracted. From the draft genome information, the nucleotide sequence of the sterol 14-demethylase gene was identified. The amino acid sequence was deduced and the tertiary structure of the enzyme was predicted. This protein showed no less than 84% amino acid sequence identities to those of genus Puccinia and no more than 68% to those of other genus.

Effect of Polyacetylene Compounds from Korean Ginseng on Lipid Peroxidation (고려인삼의 폴리아세틸렌 성분이 과산화 지질 형성에 미치는 영향)

  • Kim Hyeyoung;Lee You Hui;Kim Shin Il;Jin Sung-Ha
    • Proceedings of the Ginseng society Conference
    • /
    • 1988.08a
    • /
    • pp.81-86
    • /
    • 1988
  • The effect of three polyacetylene compounds. panaxydol. panaxynol and panaxytriol isolated from Korean ginseng on $CCI_4-induced$ lipid peroxidation in vitro and in vivo hepatic microsomal lipid peroxidation were investigated. Lipid peroxide levels both in serum and liver and serum enzyme (GOT. GPT. LDH) activities of normal or $CCI_4-treated$ mice and rats were also determined after administration of polyacetylenes. Hepatic microsomal cytochrome P-450 content and activities of aniline hydroxylase and aminopyrine demethylase were measured after treatment of polyacetylenes with or without carbon tetrachloride. As results. treatment with polyacetylenes to control mice did not influence the levels of lipid peroxides and serum enzyme activities while panaxynol did. Panaxynol itself inhibited liver lipid peroxidation in normal mice. Polyacetylene compounds protected hepatic lipid peroxidation and lowered serum lipid peroxide levels induced by $CCI_4$ Polyacetylenes prevented leakage of LDH to serum but elevated GOT and GPT levels caused by $CCI_4$ were not changed by polyacetylene pretreatment. $CCI_4$ caused losses in the content of cytochrome P-450 and activities of aniline hydroxylase and aminopyrine demethylase. When polyacetylenes were treated without $CCI_4$ panaxydol and panaxynol induced aniline hydroxylase and all three polyacetylenes induced aminopyrine demethylase. Cytochrome P-450 contents were not affected by polyacetylenes. In vitro hepatic microsomal lipid peroxidation was inhibited by polyacetylenes and $DL-{\alpha}-tocopherol$ in a concentration-dependent manner.

  • PDF

MoJMJ1, Encoding a Histone Demethylase Containing JmjC Domain, Is Required for Pathogenic Development of the Rice Blast Fungus, Magnaporthe oryzae

  • Huh, Aram;Dubey, Akanksha;Kim, Seongbeom;Jeon, Junhyun;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.193-205
    • /
    • 2017
  • Histone methylation plays important roles in regulating chromatin dynamics and transcription in eukaryotes. Implication of histone modifications in fungal pathogenesis is, however, beginning to emerge. Here, we report identification and functional analysis of a putative JmjC-domain-containing histone demethylase in Magnaporthe oryzae. Through bioinformatics analysis, we identified seven genes, which encode putative histone demethylases containing JmjC domain. Deletion of one gene, MoJMJ1, belonging to JARID group, resulted in defects in vegetative growth, asexual reproduction, appressorium formation as well as invasive growth in the fungus. Western blot analysis showed that global H3K4me3 level increased in the deletion mutant, compared to wild-type strain, indicating histone demethylase activity of MoJMJ1. Introduction of MoJMJ1 gene into ${\Delta}Mojmj1$ restored defects in pre-penetration developments including appressorium formation, indicating the importance of histone demethylation through MoJMJ1 during infection-specific morphogenesis. However, defects in penetration and invasive growth were not complemented. We discuss such incomplete complementation in detail here. Our work on MoJMJ1 provides insights into H3K4me3-mediated regulation of infection-specific development in the plant pathogenic fungus.

Studies on the Relationship of Lipid Peroxidation and Drug Metabolizing Enzyme in Regenerating Rat Liver (재생중인 흰쥐간의 Lipid Peroxidation과 약물대사효소의 상관관계에 관한 연구)

  • 고기석;최춘근
    • The Korean Journal of Zoology
    • /
    • v.27 no.4
    • /
    • pp.221-230
    • /
    • 1984
  • The activities of aminopyrine demethylase which is marker enzyme of the microsomal drug-metabolizing system, NADPH-cytochrome a reductase and glutathione peroxidase were measured during the course of liver regeneration after about seventy percent hepatectomy in Wistar rats. In addition, the extent of lipid peroxidation and contents of cytochrome P-450 were also measured. Partial hepatectomy produced a significant depression in aminopyrine demethylase, to reach a minium about 24 hours after operation, but this activity was increased to normal value during regeneration. On the other hand, in sham-operated animals, this showed no change. All the activities of NADPH-chrome P-450 contents of liver microsomes were rapidly decreased at the early stage of regeneration. These values returned to normal after 7 days. By contrast, the activity of glutathione peroxidase was nearly unchanged. According to these results, at the early stage of regeneration, the decrease of cytochrome P-450 and NADPH-cytochrome c reductase activity lead to decrease of lipid peroxidation and drug metabolizing enzyme activity. But these phenomena were not detected after 7 days of regeneration.

  • PDF

Transcriptional repression of ANGPT1 by histone H3K9 demethylase KDM3B

  • Han, Arim;Chae, Yun-Cheol;Park, Jin Woo;Kim, Kee-Beom;Kim, Ji-Young;Seo, Sang-Beom
    • BMB Reports
    • /
    • v.48 no.7
    • /
    • pp.401-406
    • /
    • 2015
  • Here we report that the H3K9 demethylase KDM3B represses transcription of the angiogenesis regulatory gene, ANGPT1. Negative regulation of ANGPT1 by KDM3B is independent of its Jumonji (JmjC) domain-mediated H3K9 demethylase activity. We demonstrate that KDM3B downregulates ANGPT1 via interaction with SMRT, and suggest that the repressor complex is formed at the promoter area of ANGPT1. Using MTT and wound healing assays, depletion of KDM3B was found to increase cell proliferation and cell motility, indicating that KDM3B has a role in angiogenesis. [BMB Reports 2015; 48(7): 401-406]

Effect of Vitamin A and $B_2$ Derivatives on Aminopyrine Demethylase Activity (비타민 A 및 $B_2$ 유도체의 Aminopyrine Demethylase 활성도에 대한 영향)

  • 이향우
    • YAKHAK HOEJI
    • /
    • v.28 no.1
    • /
    • pp.53-59
    • /
    • 1984
  • Drug-metabolizing system which has the important role in drug metabolism is localized in smooth endoplasmic reticulum of hepatocytes and is composed of NADPH, NADPH-cytochrome $P_{450}$ reductase, cytochrome $P_{450}$ and others. It is well known that the enzyme system is induced by phenobarbital and methylcholanthrene. Lipid peroxidation is reaction of oxidative deterioration of polyunsaturated lipids. Formation of lipid peroxides in liver microsome has been found to produce degradation of phospholipid, which are major components of microsomal membrane. The relationship between the formation of lipid oxides and the activities of drug-metabolizing enzyme in the liver of rats was reported by several investigators. In this study the effect of riboflavin tetrabutylate, an antioxidant on lipid peroxidation, specially the relationship between lipid peroxidation and drug-metabolizing enzyme system was investigated. In addition the effect of vitamin A derivatives, such as retinoic acid and retinoid on the enzyme was also observed. Results are summarized as followings. 1) The pretretment with riboflavin tetrabutylate inhibited completely the lengthened sleeping time due to $CCl_{4}$ treatment. 2) The increase of TBA value was prevented by the pretreatment with riboflavin tetrabutylate. 3) The pretreatment with riboflavin tetrabutylate also prevented the decrease of drug-metabolizing enzyme caused by $CCl_{4}$. 4) Both retinoic acid and retinoid remarkably decreased the activity of aminopyrine demethylase. Pretreatment of riboflavin tetrabutylate, however, prevented inhibitory effect of retinoic acid on the enzyme activity.

  • PDF

The PcG protein hPc2 interacts with the N-terminus of histone demethylase JARID1B and acts as a transcriptional co-repressor

  • Zhou, Wu;Chen, Haixiang;Zhang, Lihuang
    • BMB Reports
    • /
    • v.42 no.3
    • /
    • pp.154-159
    • /
    • 2009
  • JARID1B (jumonji AT rich interactive domain 1B) is a large nuclear protein that is highly expressed in breast cancers and is proposed to function as a repressor of gene expression. In this paper, a phage display screen using the N-terminus of JARID1B as bait identified one of the JARID1B interacting proteins, namely PcG protein (Polycomb group) hPc2. We demonstrated that the C-terminal region, including the COOH box, was required for the interaction with the N-terminus of JARID1B. In a reporter assay system, co-expression of JARID1B with hPc2 significantly enhanced the transcriptional repression. These results support a role for hPc2 acting as a transcriptional co-repressor.