• Title/Summary/Keyword: demand strength

Search Result 725, Processing Time 0.024 seconds

The Optimum Mix Design of 40MPa, 60MPa High Fluidity Concrete using Neural Network Model (신경망 모델을 이용한 40MPa, 60MPa 고유동 콘크리트의 최적배합설계)

  • Cho, Sung-Won;Cho, Sung-Eun;Kim, Young-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.223-224
    • /
    • 2021
  • Recently, the demand for high fluidity concrete has been increased due to skyscrapers. However, it has its own limits. First of all, high fluidity concrete has large variation and through trial & error it costs lots of money and time. Neural network model has repetitive learning process which can solve the problem while training the data. Therefore, the purpose of this study is to predict optimum mix design of 40MPa, 60MPa high fluidity concrete by using neural network model and verifying compressive strength by applying real data. As a result, comparing collective data and predicted compressive strength data using MATLAB, 40MPa mix design error rate was 1.2%~1.6% and 60MPa mix design error rate was 2%~3%. Overall 40MPa mix design error rate was less than 60MPa mix design error rate.

  • PDF

Influence of Various Additional Elements in Al Based Filler Alloys for Automotive and Brazing Industry

  • Sharma, Ashutosh;Shin, Y.S.;Jung, Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.1-8
    • /
    • 2015
  • Aluminium and its alloys are widely used in brazing various components in automotive industries due to their properties like lightweight, excellent ductility, malleability and formability, high oxidation and corrosion resistance, and high electrical and thermal conductivity. However, high machinability and strength of aluminium alloys are a serious concern during casting operations. The generation of porosity caused by dissolved gases and modifiers affects seriously the strength and quality of cast product. Brazing of Al and its alloys requires careful monitoring of temperature since theses alloys are brazed at around the melting temperature in most of the aluminium alloys. Therefore, the development of low temperature brazing filler alloys as well as superior strength Al alloys for various engineering applications is always in demand. In various heat exchangers and automotive applications, poor strength of Al alloys is due to the inherent porosities and casting defects. The unstable mechanical properties is therefore needed to be controlled by adding various additive elements in the aluminium and its alloys, by a change in the heat treatment procedure or by modifying the microstructure. In this regard, this article reports the effect of various elements added in aluminium alloys to improve microstructure, brazeability, machinability, castability as well as to stabilize the mechanical properties.

An Experimental Study on Shear Friction Behavior of RC Slab and SC(Steel Plate Concrete) Wall Structure with Connection Joint (RC 슬래브와 SC 벽 접합부의 전단마찰 거동에 관한 실험연구)

  • Lee, Kyung Jin;Hwang, Kyeong Min;Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.6
    • /
    • pp.623-634
    • /
    • 2013
  • In this study, the structure behavior of RC slab and SC shear wall connection was investigated. Also experimental study was performed to evaluate the factor of safety of demand shear connection strength in KEPIC SNG Standard. As a result, shear friction strength of connection was known about 300kN and shear strength of rebar increased according to the displacement increase. With the installment of the lower rebars, 40% shear strength increased compared to the non-rebar specimen.

Strength Estimation of Ready-Mixed Concrete Using Crushed Sand (부순모래를 사용한 레디믹스트 콘크리트의 배합설계 및 강도추정방법)

  • Suh, Jin-Kook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.45-52
    • /
    • 1999
  • It is difficult to keep the balance of supply and demand for natural aggregates in recent years, because natural resources have become to be almost exhausted. Crushed stone is already used for coarse aggregate instead of river gravel at present. Now, crushed sand or sea sand should be used for fine aggregate, because natural sand also has been exhausted with a few exceptions around Nakdong River. The sea sand has a lot of problems which are the corrosion of reinforcement bars, the investment of facility for cleansing salt and the cost increase due to the insufficiency of industrial water. Therefore, it is necessary to produce and to utilize the crushed sand very actively, but some material properties which are related to water absorption, strength and chemical durability, prevent from determining the generalized criteria because its rocks make much differences in its physical and chemical characteristics. In this paper, fundamental physical properties of crushed sand, which comes from Daegu Subway construction fields, have been investigated for the usability on basic material of concrete. The optimum replacement ratio and the strength estimation method of crushed sand replacing natural sand also have been presented here through the compressive strength test of ready-mixed concrete cylinders.

  • PDF

Strength and stiffness modeling of extended endplate connections with circular and rectangular bolt configurations

  • Hantouche, Elie G.;Mouannes, Elie N.
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.323-352
    • /
    • 2016
  • The results of a series of finite element (FE) simulations and experimental studies are used to develop strength and stiffness models that predict the failure capacity and response characteristics of unstiffened extended endplate connections with circular and rectangular bolt configurations associated with deep girders. The proposed stiffness models are composed of multi-linear springs which model the overall extended endplate/column flange system deformation and strength of key-components. Comparison of model predictions with FE and experimental results available in the literature show that the proposed models accurately predict the strength and the response of extended endplate/column system with circular and rectangular bolt configurations. The effect of the bolt configuration (circular and rectangular) on the prying phenomenon encountered in the unstiffened extended endplate/column system was investigated. Based on FE results, extended endplate with circular bolt configuration has a more ductile behavior and exhibits higher total prying forces. The proposed models can be used to design connections that cover all possible failure modes for extended endplate with circular bolt configuration. This study provides guidelines for engineers to account for the additional forces induced in the tension bolts and for the maximum rotational capacity demand in the connection which are required for seismic analysis and design.

Uni-axial behaviour of normal-strength concrete-filled-steel-tube columns with external confinement

  • Ho, J.C.M.;Luo, L.
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.889-910
    • /
    • 2012
  • Because of the heavy demand of confining steel to restore the column ductility in seismic regions, it is more efficient to confine these columns by hollow steel tube to form concrete-filled-steel-tube (CFST) column. Compared with transverse reinforcing steel, steel tube provides a stronger and more uniform confining pressure to the concrete core, and reduces the steel congestion problem for better concrete placing quality. However, a major shortcoming of CFST columns is the imperfect steel-concrete interface bonding occurred at the elastic stage as steel dilates more than concrete in compression. This adversely affects the confining effect and decrease the elastic modulus. To resolve the problem, it is proposed in this study to use external steel confinement in the forms of rings and ties to restrict the dilation of steel tube. For verification, a series of uni-axial compression test was performed on some CFST columns with external steel rings and ties. From the results, it was found that: (1) Both rings and ties improved the stiffness of the CFST columns and (2) the rings improve significantly the axial strength of the CFST columns while the ties did not improve the axial strength. Lastly, a theoretical model for predicting the axial strength of confined CFST columns will be developed.

Shear behavior of RC interior joints with beams of different depths under cyclic loading

  • Xi, Kailin;Xing, Guohua;Wu, Tao;Liu, Boquan
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.145-153
    • /
    • 2018
  • Extensive reinforced concrete interior beam-column joints with beams of different depths have been used in large industrial buildings and tall building structures under the demand of craft or function. The seismic behavior of the joint, particularly the relationship between deformation and strength in the core region of these eccentric reinforced concrete beam-column joints, has rarely been investigated. This paper performed a theoretical study on the effects of geometric features on the shear strength of the reinforced concrete interior beam-column joints with beams of different depths, which was critical factor in seismic behavior. A new model was developed to analyze the relationship between the shear strength and deformation based on the Equivalent Strut Mechanism (ESM), which combined the truss model and the diagonal strut model. Additionally, this paper developed a simplified calculation method to estimate the shear strength of these type eccentric joints. The accuracy of the model was verified as the modifying analysis data fitted to the test results, which was a loading test of 6 eccentric joints conducted previously.

Study on the Ultimate Strength of Gusset Plate-Circular Hollow Section(CHS) Joint (거셋플레이트-원형강관 접합부의 극한내력 도출에 관한 연구)

  • Kim, Woo-Bum;Shin, Kyung-Jae;Choi, Hyung-Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.523-533
    • /
    • 2011
  • The demand for the circular hollow section (CHS) has been increasing due to its structural advantage in long-span structures and high-rise buildings. There are not enough researches on the CHS structure, though. The behavior of the gusset plate CHS joint, to predict the ultimate strength, is not easy to predict because the load deflection curve does not show consistency. Therefore, in this study, experiments and finite element analysis (FEA) were carried out to determine the ultimate strength according to the proposed ultimate deformation limit. Finally, a reasonable ultimate strength formula was proposed through comparisons with other design guides.

Fish length dependence of target strength for black porgy and fat greenling at two frequencies of 70 and 120kHz (70 및 120kHz에서 쥐노래미와 감성돔에 대한 음향 반사 강도의 체장 의존성)

  • Lee, Dae-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.2
    • /
    • pp.137-146
    • /
    • 2012
  • Black porgy and fat greenling are commercially important fish species due to the continuously increasing demand in Korea. When estimating acoustically the fish length by a fish sizing echo sounder, it is of crucial importance to know the target strength (TS) to length dependence. In relation to these needs, the target strength experiments for live fishes were conducted in an acrylic salt water tank using two split-beam echo sounders operating at 70 and 120kHz. The target strength under well-controlled laboratory conditions was simultaneously measured with the swimming movement by digital video recording (DVR) system and analyzed as a function of fish length (L) and frequency (or wavelength ${\lambda}$). Equations of the form TS-alog (L)+blog (1)+c were derived for their TS-length dependence. The best fit regression of TS on fork length for black porgy was TS=20.62 log (L, m)-0.62 log (${\lambda}$, m)-30.68 ($r^2$=0.77). The best fit regression of TS on fork length for fat greenling was TS=12.06 log (L, m)-5.85 log (${\lambda}$, m)-22.15 ($r^2$=0.44).

Influence of Various Replacement Ratio of Electric Arc Furnace Fine Aggregate on Fundamental Properties of Limestone Based High Strength Mortar (전기로 산화 슬래그 잔골재 치환율 변화가 석회암 기반 초고강도 모르타르의 기초적 특성에 미치는 영향)

  • Moon, Byeong-Yong;Song, Yuan-Ru;Lee, Jea-Hyeon;Kim, Min-sang;Han, In-Deok;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.45-46
    • /
    • 2016
  • As the demand for super tall buildings is currently increased in domestic and foreign countries, some kinds of ultra-high strength concretes are being developed actively. Since the cross section of concrete becomes smaller thanks to such kinds of ultra-high strength concretes, the concrete structures can be much bigger, more gigantic and much ultra-high. And as another benefit which is generated thanks to the enhancement of the durability performance, the maintenance expenses are also saved. However, since low W/B ultra-high concrete has a high possibility that many cracks can occur in the initial period due to the self-shrinkage caused by the self-desiccation as one of the blending characteristics, the problem becomes bigger by influencing the safety of a structure. Therefore, in this study, it is intended to analyze the effects of substituting some limestone-based ultra-high strength mortar with electric arc furnace oxidizing slag fine aggregates on the self-shrinkage of mortar.

  • PDF