• Title/Summary/Keyword: demand forecasting error

Search Result 117, Processing Time 0.037 seconds

Wind power forecasting based on time series and machine learning models (시계열 모형과 기계학습 모형을 이용한 풍력 발전량 예측 연구)

  • Park, Sujin;Lee, Jin-Young;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.723-734
    • /
    • 2021
  • Wind energy is one of the rapidly developing renewable energies which is being developed and invested in response to climate change. As renewable energy policies and power plant installations are promoted, the supply of wind power in Korea is gradually expanding and attempts to accurately predict demand are expanding. In this paper, the ARIMA and ARIMAX models which are Time series techniques and the SVR, Random Forest and XGBoost models which are machine learning models were compared and analyzed to predict wind power generation in the Jeonnam and Gyeongbuk regions. Mean absolute error (MAE) and mean absolute percentage error (MAPE) were used as indicators to compare the predicted results of the model. After subtracting the hourly raw data from January 1, 2018 to October 24, 2020, the model was trained to predict wind power generation for 168 hours from October 25, 2020 to October 31, 2020. As a result of comparing the predictive power of the models, the Random Forest and XGBoost models showed the best performance in the order of Jeonnam and Gyeongbuk. In future research, we will try not only machine learning models but also forecasting wind power generation based on data mining techniques that have been actively researched recently.

Development of A Direct Demand Estimation Model for Forecasting of Railroad Traffic Demand (철도수요예측을 위한 직접수요모형 개발에 관한 연구)

  • Kim, Hyo-Jong;Jung, Chan-Mook
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2166-2178
    • /
    • 2010
  • The Korea Transportation Database (KTDB) is used to obtain data on the origin and destination (OD) of inter-city travel, which are currently used in railroad planning when estimating traffic demand. The KTDB employs the trip assignment method, whereby the total traffic volume researched for inter-city travel in Korea is divided into road, rail and air traffic, etc. However, as regards rail travel, the railroad stations are not identical to the existing zones or the connector has not been established because there are several stations in one zone as such, certain problems with the applicable methods have been identified. Therefore, estimates of the volume of railroad traffic using the KTDB display low reliability compared to other modes of transportation. In this study, these problems are reviewed and analyzed, and use of the aggregate model method to estimate the direct demand for rail travel is proposed in order to improve the reliability of estimation. In addition, a method of minimizing error in traffic demand estimation for the railroad field is proposed via an analysis of the relationship between the aggregate model and various social-economic indicators including population, distances, numbers of industrial employees, numbers of automobiles, and the extension of roads between cities.

  • PDF

Prediction of Power Consumptions Based on Gated Recurrent Unit for Internet of Energy (에너지 인터넷을 위한 GRU기반 전력사용량 예측)

  • Lee, Dong-gu;Sun, Young-Ghyu;Sim, Is-sac;Hwang, Yu-Min;Kim, Sooh-wan;Kim, Jin-Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.120-126
    • /
    • 2019
  • Recently, accurate prediction of power consumption based on machine learning techniques in Internet of Energy (IoE) has been actively studied using the large amount of electricity data acquired from advanced metering infrastructure (AMI). In this paper, we propose a deep learning model based on Gated Recurrent Unit (GRU) as an artificial intelligence (AI) network that can effectively perform pattern recognition of time series data such as the power consumption, and analyze performance of the prediction based on real household power usage data. In the performance analysis, performance comparison between the proposed GRU-based learning model and the conventional learning model of Long Short Term Memory (LSTM) is described. In the simulation results, mean squared error (MSE), mean absolute error (MAE), forecast skill score, normalized root mean square error (RMSE), and normalized mean bias error (NMBE) are used as performance evaluation indexes, and we confirm that the performance of the prediction of the proposed GRU-based learning model is greatly improved.

An Electric Load Forecasting Scheme with High Time Resolution Based on Artificial Neural Network (인공 신경망 기반의 고시간 해상도를 갖는 전력수요 예측기법)

  • Park, Jinwoong;Moon, Jihoon;Hwang, Eenjun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.11
    • /
    • pp.527-536
    • /
    • 2017
  • With the recent development of smart grid industry, the necessity for efficient EMS(Energy Management System) has been increased. In particular, in order to reduce electric load and energy cost, sophisticated electric load forecasting and efficient smart grid operation strategy are required. In this paper, for more accurate electric load forecasting, we extend the data collected at demand time into high time resolution and construct an artificial neural network-based forecasting model appropriate for the high time resolution data. Furthermore, to improve the accuracy of electric load forecasting, time series data of sequence form are transformed into continuous data of two-dimensional space to solve that problem that machine learning methods cannot reflect the periodicity of time series data. In addition, to consider external factors such as temperature and humidity in accordance with the time resolution, we estimate their value at the time resolution using linear interpolation method. Finally, we apply the PCA(Principal Component Analysis) algorithm to the feature vector composed of external factors to remove data which have little correlation with the power data. Finally, we perform the evaluation of our model through 5-fold cross-validation. The results show that forecasting based on higher time resolution improve the accuracy and the best error rate of 3.71% was achieved at the 3-min resolution.

A study on short-term wind power forecasting using time series models (시계열 모형을 이용한 단기 풍력발전 예측 연구)

  • Park, Soo-Hyun;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1373-1383
    • /
    • 2016
  • The wind energy industry and wind power generation have increased; consequently, the stable supply of the wind power has become an important issue. It is important to accurately predict the wind power with short-term basis in order to make a reliable planning for the power supply and demand of wind power. In this paper, we first analyzed the speed, power and the directions of the wind. The neural network and the time series models (ARMA, ARMAX, ARMA-GARCH, Holt Winters) for wind power generation forecasting were compared based on mean absolute error (MAE). For one to three hour-ahead forecast, ARMA-GARCH model was outperformed, and the neural network method showed a better performance in the six hour-ahead forecast.

An Estimation on the Market Size of Aqua-cultured Flatfish in Korea (양식 넙치 중장기 시장 규모 추정)

  • Kim, Bae-Sung;Kim, Chung-Hyeon;Cho, Jae-Hwan;Lee, Nam-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7781-7787
    • /
    • 2015
  • The purpose of This paper is to address the development on supply-demand outlook model of aqua-cultured korean Flatfish and introduces a projection of supply-demand and market prices during 2015-2017 using developed model. The supply-demand outlook model is composed as a partial equilibrium model of Korean Flat fish. Each equation in the model is estimated by the econometric techniques. A reviews of the demand-outlook model stability is also carried out by the references based on RMSPE. MAPE, and Theil's inequality coefficients. According to the reference of RMSPE, the error rates of the forecasting values of the aqua culture area, culturing quantity, production quantity, market price show less than 4%, The production quantity and farm price are predicted respectively to be 42,561MT and 10,191KW per kg in 2017.

Compensation and Amendment of Highway Travel Demand Forecasting (고속도로 교통수요 보정모형에 관한 고찰)

  • Lee, Eui-Jun;Kim, Young-Sun;Yi, Yong-Ju;OH, Young-Tae;Choi, Keechoo;Yu, Jeong Whon
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.3
    • /
    • pp.86-95
    • /
    • 2013
  • In this study, a model of compensation and amendment of forecasted travel demand was developed to calculate the range of values depends on the changes in the risk factors, selecting factors that might affect traffic demand changes among risk factors. Selected factors are as follows: influenced area population, the number of registrated vehicle per person, ratio of service industry workers, and city intervals. Then this model is applied to six routes of expressway and the calculated value were compensated with error rate being reflected on each quartile value with respect to influenced area population (200,000 people standards). Result from appling developed model to Cheongwon-Sangju expressway suggests that the model could compensate the error rate by more than 50%, which in turn validate the effectiveness of the model developed. Some limitations and future research agenda have also been identified.

Double Encoder-Decoder Model for Improving the Accuracy of the Electricity Consumption Prediction in Manufacturing (제조업 전력량 예측 정확성 향상을 위한 Double Encoder-Decoder 모델)

  • Cho, Yeongchang;Go, Byung Gill;Sung, Jong Hoon;Cho, Yeong Sik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.12
    • /
    • pp.419-430
    • /
    • 2020
  • This paper investigated methods to improve the forecasting accuracy of the electricity consumption prediction model. Currently, the demand for electricity has continuously been rising more than ever. Since the industrial sector uses more electricity than any other sectors, the importance of a more precise forecasting model for manufacturing sites has been highlighted to lower the excess energy production. We propose a double encoder-decoder model, which uses two separate encoders and one decoder, in order to adapt both long-term and short-term data for better forecasts. We evaluated our proposed model on our electricity power consumption dataset, which was collected in a manufacturing site of Sehong from January 1st, 2019 to June 30th, 2019 with 1 minute time interval. From the experiment, the double encoder-decoder model marked about 10% reduction in mean absolute error percentage compared to a conventional encoder-decoder model. This result indicates that the proposed model forecasts electricity consumption more accurately on manufacturing sites compared to an encoder-decoder model.

Generator Scheduling and Bidding Strategies in Competitive Electricity Market (경쟁시장에서 유지보수계획 및 입찰전략 수립에 관한 연구)

  • Ko, Young-Jun;Lee, Hyo-Sang;Shin, Dong-Joon;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.429-431
    • /
    • 2001
  • The vertically integrated power industry was divided into six generation companies and one market operator, where electricity trading was launched at power exchange. In this environment, the profits of each generation companies are guaranteed according to utilization of their own generation equipments. This paper represents on generator maintenance scheduling and efficient bidding strategies for generation equipments through the calculation of the contract and the application of each generator cost function based on the past demand forecasting error and market operating data.

  • PDF

Short-term load forscasting using general exponential smoonthing (지수평활을 이용한 단기부하 예측)

  • Koh, Hee-Soog;Lee, Chung-Sig;Chong, Hyong-Hwan;Lee, Tae-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.29-32
    • /
    • 1993
  • A technique computing short-term load foadcasting is essential for monitoring and controlling power system operation. This paper shows the use of general exponential smoothing to develop an adaptive forecasting system based on observed value of hourly demand. Forecasts of hourly load with lead times of one to twenty-four hours are computed at hourly intervals throughout the week. Standard error for lead times of one to twenty-four hour range from three to four percent average load. Studies are planned to investigate the use of weather influence to increase forecast accuracy.

  • PDF