기업이 물류비용을 절감할 수 있는 정교한 수요 예측 모형은 그동안 수많은 연구를 통해 다양한 방법들이 제시되었다. 이러한 연구들은 주로 수요 패턴에 의해서 적용 가능한 수요 예측 모형을 결정하고, 통계적 검증을 통해서 모형의 정확성을 판단하였다. 수요 패턴은 크게 규칙성과 불규칙성으로 나뉘어 질 수 있다. 규칙적인 패턴은 주문이 정기적이고 주문량이 일정한 경우를 의미한다. 이러한 경우에는 주로 회귀모형이나 시계열 모형을 통해서 수요를 예측하는 방법들이 사용된다. 그러나 불규칙적이고 주문량의 변동 폭이 큰 경우는 간헐적 수요(Intermittent Demand)라고 하는데, 기존의 회귀 모형이나 시계열 모형으로는 수요 예측의 오류 발생 가능성이 높기 때문이다. 간헐적 수요를 보이는 품목에 대해서는 주로 Croston모형 혹은 Holts모형 등을 사용하여 수요를 예측한다. 본 연구에서는 간헐적 수요 패턴을 보이는 항공 화물의 다양한 품목에 대해서 수요 패턴을 분석하고, 다양한 모형을 통해 수요를 예측하여 각 모형의 예측력을 비교 분석하였다. 이 과정에서 항공 화물의 품목별, 지역별로 다양한 모형의 적합도를 분석하여 항공사가 가장 효율적으로 운영할 수 있는 항공 화물의 수요 예측 모형에 대한 개발 방향을 제시하고자 함이 본 논문의 목적이다.
기존의 예측 방법들은 과거의 통계적인 수치를 사용해서 미래를 예측했었다. 정확하게 농산물 가격을 예측하려면 정확한 지식과 많은 노력이 필요하다. 그러므로 이러한 문제점을 해결하기 위해서, 본 논문에서는 농산물 예측 가격을 향상하기 위해서 전처리로 퍼지 및 신경망을 사용하였다. 또한 후처리로써 예기치 못한 상황을 실시간으로 예측할 수 있는 지능형 농사 전문가시스템을 개발하였다. 시뮬레이션결과 제안된 농산물 가격 예측이 퍼지 규칙을 사용하지 않은 기존 수요예측 시스템보다 가격오차를 줄일 수 있음을 입증했다.
This paper presents an empirical and comprehensive forecasting analysis of the uranium price. Prices are generally difficult to forecast, and the uranium price is not an exception because it is affected by many external factors, apart from imbalances between demand and supply. Therefore, a systematic analysis of multiple forecasting methods and combinations of them along repeated forecast origins is a way of discerning which method is most suitable. Results suggest that i) some sophisticated methods do not improve upon the Naïve's (horizontal) forecast and ii) Unobserved Components methods are the most powerful, although the gain in accuracy is not big. These two facts together imply that uranium prices are undoubtedly subject to many uncertainties.
제조업에 있어서 판매 후 서비스 건수와 내용 등은 향후 서비스 제공을 위한 자원배분의 효율성 증진과 서비스 품질 향상을 위해서도 매우 중요한 정보이다. 따라서 기업들은 향후 발생하는 판매 후 서비스에 대해 정확히 예측하고 그에 따라 적절히 대처하는 능력을 확보할 필요성이 제조업을 중심으로 증가하고 있다. 그러나 실제로 이들 기업들이 활용하고 있는 서비스 수요예측 방법들은 전통적인 통계적인 예측기법이거나, 시뮬레이션을 기반한 기법들이다. 예를 들면, 전통적인 통계적인 예측기법으로는 회귀분석(regression analysis)의 경우, 다양한 제품모델에 대한 판매 후 서비스 발생 패턴이 선형적인 관계가 매우 적음에도 불구하고 선형으로 가정하여 추정한다는 점과 적정한 회귀식을 가정하여야 되며, 이러한 가정이 실제 경영환경에서는 매우 어렵다는 점 등이 기존의 예측기법들의 한계점으로 지적되고 있다. 본 연구에서는 디지털 TV 모델을 생산 판매 하는 A사의 사례연구를 통하여 최근 인공지능연구에서 각광을 받고 있는 사례기반추론(case-based reasoning; CBR) 기법을 활용한 서비스 수요예측 프레임워크를 제안하고자 한다. 또한, 사례기반추론에서 핵심적인 역할 중 하나인 유사 사례추출 방법에 있어서 가장 일반적인 nearest-neighbor 방법 이외의 유사 사례추출 방법을 제안하고자 한다. 특히, 본 연구에서 제안하는 유사 사례추출 방법은 인공신경망(artificial neural network)을 활용한 자기조직화지도(Self-Organizing Maps : SOM) 군집화 기법을 활용한 유사 사례추출 방식으로 이를 활용한 서비스 수요예측 프레임워크에 구현하고, 실제 기업의 판매 후 서비스 데이터를 활용하여 본 연구에서 제안하는 서비스 수요 예측 프레임워크의 유효성을 실증적으로 검증하고자 한다.
본 연구에서는 국내 도시가스 수요 데이터를 분석하여 시간대별 도시가스 수요의 특성을 파악하고 정확한 시간대별 도시가스 수요 예측을 위해 다중회귀모형(multiple regression model)을 개발하였다. 시간대별 도시가스 수요를 정확하게 예측하는 것은 공급자의 비용 절감뿐만 아니라 안정적인 배관망 관리 측면에서도 매우 중요하다. 수요 예측 오류로 인해 가스 공급이 부족한 상황이 발생하면 부족한 공급량을 빠른 시간내에 보충하기 위해 가스 배관망의 압력을 급격히 증가시켜야 하는 응급 상황이 전개될 수 있다. 반면, 시간대별 가스 생산량이 실제 수요보다 많은 경우에는 과다한 저장 시설 운용 및 불필요한 생산 비용이 발생하는 문제가 있다. 과거 시간대별 도시가스 수요 데이터를 분석한 결과 시간대별 도시 가스 수요는 직전 시간대(즉, 24시간 전) 수요와 매우 높은 상관관계를 보이며 24시간 수요 패턴은 1주일전 동일 요일(즉, 168시간전)의 24시간 수요 패턴과 매우 높은 상관관계가 있음을 확인하였다. 또한, 외기 온도가 도시가스 수요에 영향을 주는 특수한 조건을 파악하였다. 즉, 시간대별 도시가스 수요와 시간대별 외기 온도는 평균적으로 0.853의 높은 상관계수 절대값을 보여주며, 상관관계 분석시 같은 요일에 속한 데이터만 분석하면 상관계수의 절대값은 최저 0.861 및 최고 0.965까지 증가한다. 이상의 분석 결과를 바탕으로 본 연구에서는 24시간 전 수요와 168시간 전 수요를 독립변수로 고려한 다중회귀모형 및 외기 온도를 추가한 두 번째 다중회귀모형을 제안하며, 제안한 예측모형의 성능을 확인하기 위해 2009년부터 2013년까지 5년간의 시간대별 수요 예측 결과를 평가하였다. 본 연구에서 제안한 24시간 전 수요와 168시간 전 수요를 독립변수로 고려한 다중회귀모형의 경우 과거 5년간의 수요 예측 오차율의 절대값 평균(mean absolute percentage error)은 4.5% 수준이며, 외기 온도를 추가한 모형의 경우 오차율의 절대값 평균은 5.13%임을 확인하였다.
이 연구는 IMO의 환경규제와 4차산업 혁명 기술의 확산에 따라 그중요성과 비중이 확대되고 있는 친환경 스마트 선박의 성장에 필요한 인력 수요를 통계청의 2000년~2020년의 조선산업 인력자료를 기반으로 예측하였다. 추세분석과 시계열분석의 다양한 모델을 적용하여 조선산업의 인력 수요를 예측하고 최근 5년간의 실적치와 비교하여 기하평균을 적용한 단순평균법이 예측 오차가 유의적으로 가장 적은 것으로 평가되었다. 그리고 산업통상자원부의 친환경 스마트 선박 분야의 2018년과 2020년의 인력현황 설문조사 결과를 바탕으로 조선산업 인력 증가추이를 반영하여 인력 수요를 예측하였다. 조선산업의 인력수요 예측치에 친환경 스마트 선박부분의 인력 증가수치를 반영하여 인력 수요를 예측한 결과, 2025년 62,001명, 2030년 85,035명으로 증가하는 것으로 예측되었다. 본 연구는 고부가가치 친환경 스마트 선박 분야에 필요한 인력 수요를 통계자료에 기반하여 객관적으로 예측함으로써, 향후의 인력 수요에 대응한 적절한 전문인력의 양성 및 공급 방안 수립에 기여하게 될 것으로 평가된다.
본 연구에서는 선형회귀모형(linear regression model)을 이용하여 겨울철 일일 온수 수요 총량을 예측하는 알고리즘을 개발한다. 한국지역난방공사에서는 온수 공급 계약을 맺고 있는 아파트, 상가 및 사무용 빌딩 등에 난방 및 급탕 온수를 공급한다. 일반적으로 온수는 보일러 및 열병합 발전기를 가동하여 생산하며, 경제적인 온수 생산계획을 수립하기 위해서는 온수 수요를 정확히 파악하는 것이 중요하다. 따라서, 본 연구에서는 난방을 위한 온수 수요가 급증하는 겨울철 온수 수요의 특성을 분석하고, 선형회귀모형을 이용한 온수 수요 예측 알고리즘을 개발한다. 겨울철 일일 온수 수요는 외기온도의 영향을 많이 받는 것으로 알려져 있으나, 본 연구에서는 외기온도와 예측일 하루 전날 온수 공급 실적값을 동시에 고려할 때 예측 정확도를 크게 높일 수 있음을 확인하였다. 본 연구에서 개발하는 예측 알고리즘의 타당성을 검증하기 위해 한국지역난방공사 서울 강남지사의 2006 ~ 2009년도 온수 수요 공급 실적과 기상청의 기상정보를 이용하여 겨울철 일일 온수 수요 총량을 예측한 결과, 평균 오차율(mean absolute percentage error)이 3.87%을 넘지 않는 수준임을 확인하였다.
본 논문은 전기자동차 충전시설 확충계획에 중요한 요소인 전기자동차 전력 수요량 예측정보를 생산하기 위하여 Exponential Smoothing를 이용하여 전력 수요량 예측 모형을 제안하였다. 모형의 입력자료 구축을 위하여 종속변수로 월별 시군구 전력수요량을 독립변수로 월별 시군구 충전소 보급대수, 월별 시군구 전기자동차 충전소 충전 횟수, 월별 전기자동차 등록대수 자료를 월 단위로 수집하고 수집된 7년간 자료 중 4년간 자료를 학습기간으로 3년간 자료를 검증 기간으로 적용하였다. 전기자동차 전력 수요량 예측 모형의 정확성을 검증하기위하여 통계적 방법인 Exponential Smoothing(ETS), ARIMA모형의 결과와 비교한 결과 ETS, ARIMA 각각의 오차율은 12%, 21%로 본 논문에서 제시한 ETS가 9% 더 정확하게 분석되었으며, 전기자동차 전력 수요량 예측 모형으로써 적합함을 확인하였다. 향후 이 모형을 이용한 전기자동차 충전소 설치 계획부터 운영관리 측면에서 활용될 것으로 기대한다.
COVID-19의 대유행은 컨테이너를 사용하는 국가 간 수출입 물동량 불균형을 더욱 악화시켰으며, 이는 공컨테이너 수급의 문제까지 이어지게 되었다. 적정 수요만큼의 공컨테이너 확보는 안정적이고 효율적인 항만 운영을 위해 필수적인 요소이다. 지금까지 여러 기법을 사용한 공컨테이너 수요예측 방안이 연구되어 왔다. 그러나 항만 및 선사에서 직접 활용 가능한 수요예측 보다는 월 혹은 연 단위의 장기적인 예측에 머루르고 있었다. 본 연구에서는 실제 인공신경망을 이용한 일별, 주별 단위 예측 방안을 제시한다. 이를 위해 머신러닝 기법 중 다층 퍼셉트론과 회귀분석을 활용하여 수요예측을 진행하였으며, 데이터 부족 문제를 해결하기 위해 적컨테이너와 공컨테이너의 입항 후 다시 항만으로 유입되는 과정을 기반으로 데이터를 재가공하였다. 이를 통해, 정확도가 매우 높지는 않지만, 현장에서는 활용 가능한 일별 및 주별 수요 예측 모델을 개발할 수 있었다.
본 연구에서는 새마을 무궁화 열차의 주요 5개노선(경부선, 호남선, 전라선, 장항선, 중앙선)의 단기수송수요의 예측모형 선정방안을 제시하고 유용성을 확인하기 위한 검증결과를 제시하였다. 분석을 위해 계절별 특성이 반영된 SARIMA 모형을 이용하였으며, 주중/주말 통행 특성 및 대체근무제 등과 같은 공휴일 특성을 반영하고자 각 노선별 주중/주말 일평균 모형을 각각 구축하였다. 또한 모형의 신뢰도를 높이기 위해 EXPO 개최, 새로운 노선의 개통 등 노선별 개입요소를 고려하여 수송수요의 예측모형에 반영하였으며 모형 예측력의 검증을 통해 정도 높은 모형을 구축하였음을 확인하였다. 본 연구를 통해 개발된 모형은 열차 노선별 단기운행계획 수립을 위한 기초자료로 활용될 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.