• 제목/요약/키워드: demand forecasting accuracy

검색결과 119건 처리시간 0.022초

간헐적 수요예측을 위한 이항가중 지수평활 방법 (A Binomial Weighted Exponential Smoothing for Intermittent Demand Forecasting)

  • 하정훈
    • 산업경영시스템학회지
    • /
    • 제41권1호
    • /
    • pp.50-58
    • /
    • 2018
  • Intermittent demand is a demand with a pattern in which zero demands occur frequently and non-zero demands occur sporadically. This type of demand mainly appears in spare parts with very low demand. Croston's method, which is an initiative intermittent demand forecasting method, estimates the average demand by separately estimating the size of non-zero demands and the interval between non-zero demands. Such smoothing type of forecasting methods can be suitable for mid-term or long-term demand forecasting because those provides the same demand forecasts during the forecasting horizon. However, the smoothing type of forecasting methods aims at short-term forecasting, so the estimated average forecast is a factor to decrease accuracy. In this paper, we propose a forecasting method to improve short-term accuracy by improving Croston's method for intermittent demand forecasting. The proposed forecasting method estimates both the non-zero demand size and the zero demands' interval separately, as in Croston's method, but the forecast at a future period adjusted by binomial weight according to occurrence probability. This serves to improve the accuracy of short-term forecasts. In this paper, we first prove the unbiasedness of the proposed method as an important attribute in forecasting. The performance of the proposed method is compared with those of five existing forecasting methods via eight evaluation criteria. The simulation results show that the proposed forecasting method is superior to other methods in terms of all evaluation criteria in short-term forecasting regardless of average size and dispersion parameter of demands. However, the larger the average demand size and dispersion are, that is, the closer to continuous demand, the less the performance gap with other forecasting methods.

최대수요전력 관리 장치의 부하 예측에 관한 연구 (A Study on the Load Forecasting Methods of Peak Electricity Demand Controller)

  • 공인엽
    • 대한임베디드공학회논문지
    • /
    • 제9권3호
    • /
    • pp.137-143
    • /
    • 2014
  • Demand Controller is a load control device that monitor the current power consumption and calculate the forecast power to not exceed the power set by consumer. Accurate demand forecasting is important because of controlling the load use the way that sound a warning and then blocking the load when if forecasted demand exceed the power set by consumer. When if consumer with fluctuating power consumption use the existing forecasting method, management of demand control has the disadvantage of not stable. In this paper, load forecasting of the unit of seconds using the Exponential Smoothing Methods, ARIMA model, Kalman Filter is proposed. Also simulation of load forecasting of the unit of the seconds methods and existing forecasting methods is performed and analyzed the accuracy. As a result of simulation, the accuracy of load forecasting methods in seconds is higher.

신경망을 이용한 철도 수요 예측 (Forecasting the Demand of Railroad Traffic using Neural Network)

  • 신영근;정원교;박상성;장동식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1931-1936
    • /
    • 2007
  • Demand forecasting for railroad traffic is fairly important to establish future policy and plan. The future demand of railroad traffic can be predicted by analyzing the demand of air, marine and bus traffic which influence the demand of railroad traffic. In this study, forecasting the demand of railroad traffic is implemented through neural network using the demand of air, marine and bus traffic. Estimate accuracy of the demand of railroad traffic was shown about 84% through neural net model proposed.

  • PDF

다중 머신러닝 기법을 활용한 무기체계 수리부속 수요예측 정확도 개선에 관한 실증연구 (An Empirical Study on Improving the Accuracy of Demand Forecasting Based on Multi-Machine Learning)

  • 김명화;이연준;박상우;김건우;김태희
    • 한국군사과학기술학회지
    • /
    • 제27권3호
    • /
    • pp.406-415
    • /
    • 2024
  • As the equipment of the military has become more advanced and expensive, the cost of securing spare parts is also constantly increasing along with the increase in equipment assets. In particular, forecasting demand for spare parts one of the important management tasks in the military, and the accuracy of these predictions is directly related to military operations and cost management. However, because the demand for spare parts is intermittent and irregular, it is often difficult to make accurate predictions using traditional statistical methods or a single statistical or machine learning model. In this paper, we propose a model that can increase the accuracy of demand forecasting for irregular patterns of spare parts demanding by using a combination of statistical and machine learning algorithm, and through experiments on Cheonma spare parts demanding data.

단기 시계열 제품의 전이함수를 이용한 수요예측과 마케팅 정책에 미치는 영향에 관한 연구 (A Study on the Demand Forecasting by using Transfer Function with the Short Term Time Series and Analyzing the Effect of Marketing Policy)

  • 서명율;이종태
    • 산업공학
    • /
    • 제16권4호
    • /
    • pp.400-410
    • /
    • 2003
  • Most of the demand forecasting which have been studied is about long-term time series over 15 years demand forecasting. In this paper, we set up the most optimal ARIMA model for the short-term time series demand forecasting and suggest demand forecasting system for short-term time series by appraising suitability and predictability. We are going to use the univariate ARIMA model in parallel with the bivariate transfer function model to improve the accuracy of forecasting. We also analyze the effect of advertisement cost, scale of branch stores, and number of clerk on the establishment of marketing policy by applying statistical methods. After then we are going to show you customer's needs, which are number of buying products. We have applied this method to forecast the annual sales of refrigerator in four branch stores of A company.

자원 수급 및 가격 예측 -니켈 사례를 중심으로- (Resource Demand/Supply and Price Forecasting -A Case of Nickel-)

  • 정재헌
    • 한국시스템다이내믹스연구
    • /
    • 제9권1호
    • /
    • pp.125-141
    • /
    • 2008
  • It is very difficult to predict future demand/supply, price for resources with acceptable accuracy using regression analysis. We try to use system dynamics to forecast the demand/supply and price for nickel. Nickel is very expensive mineral resource used for stainless production or other industrial production like battery, alloy making. Recent nickel price trend showed non-linear pattern and we anticipated the system dynamic method will catch this non-linear pattern better than the regression analysis. Our model has been calibrated for the past 6 year quarterly data (2002-2007) and tested for next 5 year quarterly data(2008-2012). The results were acceptable and showed higher accuracy than the results obtained from the regression analysis. And we ran the simulations for scenarios made by possible future changes in demand or supply related variables. This simulations implied some meaningful price change patterns.

  • PDF

데이터 마이닝을 이용한 패트리어트 수리부속의 간헐적 수요 예측에 관한 연구 (A Study on Intermittent Demand Forecasting of Patriot Spare Parts Using Data Mining)

  • 박천규;마정목
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.234-241
    • /
    • 2021
  • 군에서는 수요예측에 대한 중요성을 인식하여 수리부속에 대해 예측 정확도 향상을 위한 많은 연구가 이루어지고 있다. 수리부속 수요예측은 예산 운영과 장비 가동률 측면에서 매우 중요한 요소가 되고 있다. 그러나 현재 군에서 적용중인 시계열 모형으로는 수요량의 변동과 발생주기가 일정하지 않은 간헐적 수요에 대해서는 예측에 한계가 있는 실정이다. 따라서, 본 연구는 공군 패트리어트 수리부속의 간헐적 수요에 대한 예측 정확도를 제고하는 방법을 제시하고자 하였다. 이를 위해서 2013년부터 2019년까지의 701개의 수리부속 소모개수를 토대로 수요 유형을 구분하여 수리부속의 간헐적 수요 자료를 수집하였다. 또한, 장비 고장에 영향을 줄 수 있는 외부 요인으로는 기온, 장비운영시간을 식별하여 입력변수로 선정하였다. 그 후, 소모개수와 외부 요인을 통해 군에서 적용하는 시계열 모형과 제안하는 데이터 마이닝 모형으로 예측을 실시하여 모형별 예측 정확도를 판단했다. 예측 결과로 기존의 시계열 모형과 비교하여 데이터 마이닝 모형의 예측 정확도가 높았으며, 그 중 다층 퍼셉트론 모형이 가장 우수한 성능을 보였다.

데이터 마이닝 기반의 수리부속 수요예측 연구 (A Study on Forecasting Spare Parts Demand based on Data-Mining)

  • 김재동;이한준
    • 인터넷정보학회논문지
    • /
    • 제18권1호
    • /
    • pp.121-129
    • /
    • 2017
  • 수리부속 수요예측은 장비가동률 향상과 국방 운영 예산 효율화 제고를 위한 국방 군수 분야의 핵심 과제 중 하나이다. 현재 우리군은 수리부속 소요 데이터를 활용한 시계열 기법으로 과거 데이터 분석을 통해 수리부속 수요예측에 활용하고 있으나 정확도 제고에 지속적인 노력이 요구되고 있는 실정이다. 이에 본 연구에서는 지난 5개년의 수리부속 18,476개 품목의 수요데이터를 수집하고 데이터마이닝 기법을 활용한 수리부속 수요예측 모델을 제안하였다. 제안한 모델에 따른 실험 결과는 기존 시계열 기법에 비해 개선된 수요예측 정확도를 보였다.

딥러닝을 이용한 열 수요예측 모델 개발 (Development of Heat Demand Forecasting Model using Deep Learning)

  • 서한석;신광섭
    • 한국빅데이터학회지
    • /
    • 제3권2호
    • /
    • pp.59-70
    • /
    • 2018
  • 특정 지역의 고객을 대상으로 열을 공급하는 지역난방 서비스의 안정적인 운영을 위해서는 단기간의 미래 수요를 보다 정확하게 예측하고, 효율적인 방법으로 생산 및 공급하는 것이 무엇보다 중요하다. 그러나 열 소비에 영향을 미치는 요소가 매우 다양할 뿐만 아니라 개별 소비자 및 지역적 특성에 따라 소비 형태가 달라지기 때문에 일반적인 상황에도 적용될 수 있는 범용적 열 수요 예측 모형을 개발하는 것은 매우 어렵다. 따라서 본 연구에서는 실시간으로 확보할 수 있는 제한적인 정보만을 바탕으로 딥러닝 기법을 활용한 수요예측 모형을 개발하고자 한다. 해당 지역의 외기온도와 날짜로만 구성된 과거 데이터를 입력 변수로 하여 텐서플로의 인공신경망을 학습시키는 방법으로 수요 예측 모형을 개발하였다. 기존의 회귀분석 기법을 통해 예측된 수요의 정확도와의 비교를 통해 제안된 모델의 성능을 평가하였다. 본 연구의 열 수요 예측 모델은 단기적 수요 예측을 위해 실시간으로 확보할 수 있는 제한적인 변수만으로도 수요 예측의 정확도를 높일 수 있음을 보였다. 나아가 개별 지역에서는 지역적 특수성을 추가하여 수요 예측 정확도를 높이는 데 활용할 수 있을 것이다.

개입 ARIMA 모형을 이용한 KTX 수요예측 (Forecasting the KTX Passenger Demand with Intervention ARIMA Model)

  • 김관형;김한수;이성덕;이현기;윤경만
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1715-1721
    • /
    • 2011
  • For an efficient railroad operations the demand forecasting is required. Time series models can quickly forecast the future demand with fewer data. As well as the accuracy of forecasting is excellent compared to other methods. In this study is proposed the intervention ARIMA model for forecasting methods of KTX passenger demand. The intervention ARIMA model may reflect the intervention such as the Kyongbu high-speed rail project second phase. The simple seasonal ARIMA model is predicted to overestimate the KTX passenger demand. However, intervention ARIMA model is predicted the reasonable results. The KTX passenger demands were predicted to be a week units separated by the weekday and weekend.

  • PDF