• Title/Summary/Keyword: demand control

Search Result 2,320, Processing Time 0.035 seconds

A Stochastic Bilevel Scheduling Model for the Determination of the Load Shifting and Curtailment in Demand Response Programs

  • Rad, Ali Shayegan;Zangeneh, Ali
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1069-1078
    • /
    • 2018
  • Demand response (DR) programs give opportunity to consumers to manage their electricity bills. Besides, distribution system operator (DSO) is interested in using DR programs to obtain technical and economic benefits for distribution network. Since small consumers have difficulties to individually take part in the electricity market, an entity named demand response provider (DRP) has been recently defined to aggregate the DR of small consumers. However, implementing DR programs face challenges to fairly allocate benefits and payments between DRP and DSO. This paper presents a procedure for modeling the interaction between DRP and DSO based on a bilevel programming model. Both DSO and DRP behave from their own viewpoint with different objective functions. On the one hand, DRP bids the potential of DR programs, which are load shifting and load curtailment, to maximize its expected profit and on the other hand, DSO purchases electric power from either the electricity market or DRP to supply its consumers by minimizing its overall cost. In the proposed bilevel programming approach, the upper level problem represents the DRP decisions, while the lower level problem represents the DSO behavior. The obtained bilevel programming problem (BPP) is converted into a single level optimizing problem using its Karush-Kuhn-Tucker (KKT) optimality conditions. Furthermore, point estimate method (PEM) is employed to model the uncertainties of the power demands and the electricity market prices. The efficiency of the presented model is verified through the case studies and analysis of the obtained results.

Moderating Effect of Emotional Intelligence on the Relationships Between Job Demand and Burn-out of Radiologic Technologists (방사선사의 직무요구와 소진간의 관계에서 감성지능의 역할)

  • Ahn, Seong-Ah;Jung, Bong-Jae
    • Journal of radiological science and technology
    • /
    • v.33 no.4
    • /
    • pp.313-320
    • /
    • 2010
  • The purpose of this study is to investigate the relationships between job role and exhausting metal status of radiologic technologists. The results showed as follows: First, job demand(role conflict, recognition demend, work demend) of radiologic technologist highly correlated to its exhausting mental status. Second, emotional intelligence moderated the relation between on the relationship between job demand(recognition demend) and burn-out(decline of success). We concluded that radiologic technologist's intervention for burn-out have positive effect on improving organizational performance. Further studies are needed to develop and test the effect of intervention programs for emotional intelligence and burn-out control.

Reduced Switch Count Topology of Current Flow Control Apparatus for MTDC Grids

  • Diab, Hatem Yassin;Marei, Mostafa Ibrahim;Tennakoon, Sarath B.
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1743-1751
    • /
    • 2016
  • The increasing demand for high voltage DC grids resulting from the continuous installation of offshore wind farms in the North Sea has led to the concept of multi-terminal direct current (MTDC) grids, which face some challenges. Power (current) flow control is a challenge that must be addressed to realize a reliable operation of MTDC grids. This paper presents a reduced switch count topology of a current flow controller (CFC) for power flow and current limiting applications in MTDC grids. A simple control system based on hysteresis band current control is proposed for the CFC. The theory of operation and control of the CFC are demonstrated. The key features of the proposed controller, including cable current balancing, cable current limiting, and current nulling, are illustrated. An MTDC grid is simulated using MATLAB/SIMULINK software to evaluate the steady state and dynamic performance of the proposed CFC topology. Furthermore, a low power prototype is built for a CFC to experimentally validate its performance using rapid control prototyping. Simulation and experimental studies indicate the fast dynamic response and precise results of the proposed topology. Furthermore, the proposed controller offers a real solution for power flow challenges in MTDC grids.

Optimization of reactivity control in a small modular sodium-cooled fast reactor

  • Guo, H.;Buiron, L.;Sciora, P.;Kooyman, T.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1367-1379
    • /
    • 2020
  • The small modular sodium-cooled fast reactor (SMSFR) is an important component of Generation-IV reactors. The objective of this work is to improve the reactivity control in SMSFR by using innovative systems, including burnable poisons and optimized control rods. SMSFR with MOX fuel usually exhibits high burnup reactivity loss that leads to high excess reactivity and potential fuel melting in control rod withdrawal (CRW) accidents, which becomes an important constraint on the safety and economic efficiency of SMSFR. This work applies two types of burnable poisons in a SMSFR to reduce the excess reactivity. The first one homogenously loads minor actinides in the fuel. The second one combines absorber and moderators in specific assemblies. The influence of burnable poisons on the core characteristics is discussed and integrated into the analysis of CRW accidents. The results show that burnable poisons improve the safety performance of the core in a significant way. Burnable poisons also lessen the demand for the number, absorption ability, and insertion depth of control rods. Two optimized control rod designs with rare earth oxides (Eu2O3 and Gd2O3) and moderators are compared to the conventional design with natural boron carbide (B4C). The optimized designs show improved neutronic and safety performance.

Sliding mode control for structures based on the frequency content of the earthquake loading

  • Pnevmatikos, Nikos G.;Gantes, Charis J.
    • Smart Structures and Systems
    • /
    • v.5 no.3
    • /
    • pp.209-221
    • /
    • 2009
  • A control algorithm for seismic protection of building structures based on the theory of variable structural control or sliding mode control is presented. The paper focus in the design of sliding surface. A method for determining the sliding surface by pole assignment algorithm where the poles of the system in the sliding surface are obtained on-line, based on the frequency content of the incoming earthquake signal applied to the structure, is proposed. The proposed algorithm consists of the following steps: (i) On-line FFT process is applied to the incoming part of the signal and its frequency content is recognized. (ii) A transformation of the frequency content to the complex plane is performed and the desired location of poles of the controlled structure on the sliding surface is estimated. (iii) Based on the estimated poles the sliding surface is obtained. (iv) Then, the control force which will drive the response trajectory into the estimated sliding surface and force it to stay there all the subsequent time is obtained using Lyapunov stability theory. The above steps are repeated continuously for the entire duration of the incoming earthquake. The potential applications and the effectiveness of the improved control algorithm are demonstrated by numerical examples. The simulation results indicate that the response of a structure is reduced significantly compared to the response of the uncontrolled structure, while the required control demand is achievable.

A Study on Control system design for Automated Cultivation of product (농작물 재배 자동화를 위한 제어시스템 설계에 관한 연구)

  • Cho, Young Seok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.55-60
    • /
    • 2014
  • Today, there is increasing the elderly population in rural community, and people of returning from the urban to the rural community are demand to be of high value-added agriculture. In this time, there are required to regularization, standardization, automation, for getting of production of high value crops. In this paper, we are study for automation cultivation control system design for produce high-value crops. this system were designed of two parts that one part is measure and control unit, another part is server part for database and server side control. the main controller for measurement and control is used MC9S08AW60, server for Database and server-side control was using MySQL with CentOS. The source code of control program was coding C and compile with GCC. the functions of measurement and control unit are digital input and output each 8channels and can be scan-able of 20 Bit with 2CH/Sec. Analog Output were designed that can be output of 4-20mA or 0-5V on 4channel. The Digital input and output part were designed 8-channel, and using the high speed photo coupler and relays. We showed that system is possible to measure a 20bit data width, 2Ch/sec as 8 channel analog signals.

Annual Energy Demand Analysis of a Lettuce Growing Plant Factory according to the Environmental Changes (상추 재배 식물공장의 환경변화에 따른 연중 에너지 요구량 분석)

  • Eun Jung Choi;Jaehyun Kim;Sang Min Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.278-284
    • /
    • 2023
  • Recently, a closed-type plant factory has been receiving attention as a advanced agricultural method. It has diverse advantages such as climate-independence, high productivity and stable year-round production. However, high energy cost caused by environmental control system is considered as a challenges of a closed-type plant factory. In order to reduce the energy cost, investigation about energy load which is directly connected to energy consumption needs to be conducted. In this study, energy load changes of a plant factory have been analytically analyzed according to the environmental changes. The target plant factory was a lettuce growing container farm. Firstly, the impact of photoperiod, set temperature and relative humidity change were examined. Under the climate condition of Daejeon in South Korea, increase of photoperiod and set temperature rose a yearly energy demand of a container farm. However, increase of set relative humidity decreased a yearly energy demand. Secondly, the climate environment effect was compared by investigating the energy demand under 9 different climate conditions. As a result, the difference between maximum and minimum value of the yearly energy demand showed 21.7%. Lastly, sensitivity analysis of each parameter (photoperiod, set temperature and relative humidity) has been suggested under 3 different climate conditions. The ratio of heating and cooling demand was varied depending on the climate, so the effect of each parameter became different.

A Design of Learning Contents Management System using Automated History System (자동화된 이력 시스템을 이용한 학습콘텐츠 관리 시스템 설계)

  • Kim, Nam-Ho;Park, Young-B.;Han, Kyu-Jung;Lee, Crystal
    • Journal of The Korean Association of Information Education
    • /
    • v.12 no.3
    • /
    • pp.313-322
    • /
    • 2008
  • As cyber education using e-Learning system is expanded, various Learning Contents has been created to satisfy the demand of various students. But since it takes long time and spends high cost to create e-Learning contents, it is hard to satisfy the demand of various students. To solve this problem standardizations of the Learning Contents and researches of Learning Contents Metadata are focused in reusability of Learning Contents and information retrieval of Learning Contents. In this paper to improve manageability and retrievability, legacy version control and document management system are introduced. Based on existing version control and document management system, we developed automated history control system. To conveniently provide retrieval, inquiry and integrating of Learning Contents, we researched Learning Contents Management System based on SOA to easily approach with the Learning Contents Management Server which is dispersed on wide area

  • PDF

Development of Energy Management System for Micro-Grid with Photovoltaic and Battery system

  • Asghar, Furqan;Talha, Muhammad;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.299-305
    • /
    • 2015
  • Global environmental concerns and the ever increasing need of energy, coupled with steady progress in renewable energy technologies, are opening up new opportunities for utilization of renewable energy resources. Distributed electricity generation is a suitable option for sustainable development thanks to the load management benefits and the opportunity to provide electricity to remote areas. Solar energy being easy to harness, non-polluting and never ending is one of the best renewable energy sources for electricity generation in present and future time. Due to the random and intermittent nature of solar source, PV plants require the adoption of an energy storage and management system to compensate fluctuations and to meet the energy demand during night hours. This paper presents an efficient, economic and technical model for the design of a MPPT based grid connected PV with battery storage and management system. This system satisfies the energy demand through the PV based battery energy storage system. The aim is to present PV-BES system design and management strategy to maximize the system performance and economic profitability. PV-BES (photovoltaic based battery energy storage) system is operated in different modes to verify the system feasibility. In case of excess energy (mode 1), Li-ion batteries are charged using CC-CV mechanism effectively controlled by fuzzy logic based PID control system whereas during the time of insufficient power from PV system (mode 2), batteries are used as backup to compensate the power shortage at load and likewise other modes for different scenarios. This operational mode change in PV-BES system is implemented by State flow chart technique based on SOC, DC bus voltages and solar Irradiance. Performance of the proposed PV-BES system is verified by some simulations study. Simulation results showed that proposed system can overcome the disturbance of external environmental changes, and controls the energy flow in efficient and economical way.

A Study on Winter Season Measurement Results to cope with Dynamic Pricing for the VRF System

  • Kim, Hwan-yong;Kim, Min-seok;Lee, Je-hyeon;Song, Young-hak
    • Architectural research
    • /
    • v.17 no.3
    • /
    • pp.109-115
    • /
    • 2015
  • The dynamic pricing of electricity, where the electricity rate increases in a time zone with a high demand for electricity is typically applied to a building whose power reception capacity is greater than a certain size. This includes the time of use(TOU) electricity pricing in Korea which can induce the effect of reducing the power demand of a building. Meanwhile, a VRF (Variable Refrigerant Flow) system that uses electricity is regarded as one of the typical heating and cooling systems along with central air conditioning (central HVAC) for its easy operation and application to the building. Thus, to reduce power energy and operating costs of a building in which the TOU and VRF systems are applied simultaneously, we suggested a control for changing the indoor temperature setting within the thermal comfort range or limiting the rotational speed of an inverter compressor. In this study, to describe the features of the above-mentioned control and verify its effects, we evaluated the results obtained from the analysis of its operation data. Through the actual measurements in winter operations for 73 days since mid- December 2014, we confirmed a reduction of 10.9% in power energy consumption and 12.2% in operating costs by the new control. Also, a reduction of 13.3% in power energy consumption was identified through a regression analysis.