• 제목/요약/키워드: delta feature

검색결과 75건 처리시간 0.021초

화자인식을 위한 주파수 워핑 기반 특징 및 주파수-시간 특징 평가 (Evaluation of Frequency Warping Based Features and Spectro-Temporal Features for Speaker Recognition)

  • 최영호;반성민;김경화;김형순
    • 말소리와 음성과학
    • /
    • 제7권1호
    • /
    • pp.3-10
    • /
    • 2015
  • In this paper, different frequency scales in cepstral feature extraction are evaluated for the text-independent speaker recognition. To this end, mel-frequency cepstral coefficients (MFCCs), linear frequency cepstral coefficients (LFCCs), and bilinear warped frequency cepstral coefficients (BWFCCs) are applied to the speaker recognition experiment. In addition, the spectro-temporal features extracted by the cepstral-time matrix (CTM) are examined as an alternative to the delta and delta-delta features. Experiments on the NIST speaker recognition evaluation (SRE) 2004 task are carried out using the Gaussian mixture model-universal background model (GMM-UBM) method and the joint factor analysis (JFA) method, both based on the ALIZE 3.0 toolkit. Experimental results using both the methods show that BWFCC with appropriate warping factor yields better performance than MFCC and LFCC. It is also shown that the feature set including the spectro-temporal information based on the CTM outperforms the conventional feature set including the delta and delta-delta features.

채널보상기법 및 특징파라미터에 따른 한국어 연속숫자음 전화음성의 인식성능 비교 (Comparison of the recognition performance of Korean connected digit telephone speech depending on channel compensation methods and feature parameters)

  • 정성윤;김민성;손종목;배건성;김상훈
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2002년도 11월 학술대회지
    • /
    • pp.201-204
    • /
    • 2002
  • As a preliminary study for improving recognition performance of the connected digit telephone speech, we investigate feature parameters as well as channel compensation methods of telephone speech. The CMN and RTCN are examined for telephone channel compensation, and the MFCC, DWFBA, SSC and their delta-features are examined as feature parameters. Recognition experiments with database we collected show that in feature level DWFBA is better than MFCC and for channel compensation RTCN is better than CMN. The DWFBA+Delta_ Mel-SSC feature shows the highest recognition rate.

  • PDF

분리된 고유공간을 이용한 잡음환경에 강인한 특징 정규화 기법 (Robust Feature Normalization Scheme Using Separated Eigenspace in Noisy Environments)

  • 이윤재;고한석
    • 한국음향학회지
    • /
    • 제24권4호
    • /
    • pp.210-216
    • /
    • 2005
  • 본 논문에서는 잡음에 강인한 음성인식을 위하여 고유공간에 기반을 둔 새로운 특징 정규화 기법을 제안한다. 일반적으로 평균과 분산의 정규화 (MVN)는 켑스트럼 상에서 수행된다. 그러나 최근에 고유공간을 이용한 MVN기법이 소개되었고, 그 고유공간 정규화 기법에서는 하나의 고유공간을 이용하였다. 이 과정에는 켑스트럼 상의 특징 벡터를 선형 주성분 분석 (PCA)행렬을 통하여 고유공간으로 변환시킨 후 MVN을 수행하는 과정이 포함된다. 이 방법에서는 전체 39차의 특징분포를 하나의 고유공간으로 표현하였다. 그러나 이 기법의 경우 전체 특징 분포를 표현함에 세밀함이 떨어지기 때문에 더욱 세밀한 분포의 표현을 위해 본 논문에서는 static 특징, 1차 미분 계수, 2차 미분계수에 각각 유일하고 독립적인 분리된 고유공간을 적용하는 것을 제안하였다. 또한 고유공간에서 정규화 된 훈련 데이터를 이용하여 모델을 만든다. 마지막으로 훈련 데이터의 분포와 잡음환경에서의 테스트 데이터의 분포 특성의 차이를 줄이기 위해 켑스트럼 상에서의 회전 기법을 적용시킨다. 그 결과, 기본적인 고유공간 정규화 기법보다 향상된 성능을 얻을 수 있었다.

지문 영상의 자동 분류에 관한 연구 (A Study on Automatic Classification of Fingerprint Images)

  • 임인식;신태민;박구만;이병래;박규태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.628-631
    • /
    • 1988
  • This paper describes a fingerprint classification on the basis of feature points(whorl, core) and feature vector and uses a syntactic approach to identify the shape of flow line around the core. Fingerprint image is divided into 8 by 8 subregions and fingerprint region is separated from background. For each subregion of fingerprint region, the dominant ridge direction is obtained to use the slit window quantized in 8 direction and relaxation is performed to correct ridge direction code. Feature points(whorl, core, delta) are found from the ridge direction code. First classification procedure divides the types of fingerprint into 4 class based on whorl and cores. The shape of flow line around the core is obtained by tracing for the fingerprint which has one core or two core and is represented as string. If the string is acceptable by LR(1) parser, feature vector is obtained from feature points(whorl, core, delta) and the shape of flow line around the core. Feature vector is used hierarchically and linearly to classify fingerprint again. The experiment resulted in 97.3 percentages of sucessful classification for 71 fingerprint impressions.

  • PDF

화자확인에서 특징벡터의 순시 정보와 선형 변환의 효과적인 적용 (Effective Combination of Temporal Information and Linear Transformation of Feature Vector in Speaker Verification)

  • 서창우;조미화;임영환;전성채
    • 말소리와 음성과학
    • /
    • 제1권4호
    • /
    • pp.127-132
    • /
    • 2009
  • The feature vectors which are used in conventional speaker recognition (SR) systems may have many correlations between their neighbors. To improve the performance of the SR, many researchers adopted linear transformation method like principal component analysis (PCA). In general, the linear transformation of the feature vectors is based on concatenated form of the static features and their dynamic features. However, the linear transformation which based on both the static features and their dynamic features is more complex than that based on the static features alone due to the high order of the features. To overcome these problems, we propose an efficient method that applies linear transformation and temporal information of the features to reduce complexity and improve the performance in speaker verification (SV). The proposed method first performs a linear transformation by PCA coefficients. The delta parameters for temporal information are then obtained from the transformed features. The proposed method only requires 1/4 in the size of the covariance matrix compared with adding the static and their dynamic features for PCA coefficients. Also, the delta parameters are extracted from the linearly transformed features after the reduction of dimension in the static features. Compared with the PCA and conventional methods in terms of equal error rate (EER) in SV, the proposed method shows better performance while requiring less storage space and complexity.

  • PDF

RECOGNIZING SIX EMOTIONAL STATES USING SPEECH SIGNALS

  • Kang, Bong-Seok;Han, Chul-Hee;Youn, Dae-Hee;Lee, Chungyong
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2000년도 춘계 학술대회 및 국제 감성공학 심포지움 논문집 Proceeding of the 2000 Spring Conference of KOSES and International Sensibility Ergonomics Symposium
    • /
    • pp.366-369
    • /
    • 2000
  • This paper examines three algorithms to recognize speaker's emotion using the speech signals. Target emotions are happiness, sadness, anger, fear, boredom and neutral state. MLB(Maximum-Likeligood Bayes), NN(Nearest Neighbor) and HMM (Hidden Markov Model) algorithms are used as the pattern matching techniques. In all cases, pitch and energy are used as the features. The feature vectors for MLB and NN are composed of pitch mean, pitch standard deviation, energy mean, energy standard deviation, etc. For HMM, vectors of delta pitch with delta-delta pitch and delta energy with delta-delta energy are used. We recorded a corpus of emotional speech data and performed the subjective evaluation for the data. The subjective recognition result was 56% and was compared with the classifiers' recognition rates. MLB, NN, and HMM classifiers achieved recognition rates of 68.9%, 69.3% and 89.1% respectively, for the speaker dependent, and context-independent classification.

  • PDF

망막 세포 특성에 의한 영상인식에 관한 연구 (A Study on Image Recognition based on the Characteristics of Retinal Cells)

  • 조재현;김도현;김광백
    • 한국정보통신학회논문지
    • /
    • 제11권11호
    • /
    • pp.2143-2149
    • /
    • 2007
  • 최근 시각 장애인을 위한 인공망막 모델 구현에 관한 연구 중 시피질 자극기 기술은 시각 자극 전달의 중간 단계를 생략하고 직접 뇌세포를 자극하는 것이다. 본 논문에서는 망막에서 시각 피질로 시각정보를 전달할 때 발생하는 시각 피질의 특성, 즉 방향성에 대한 반응 특성을 특징 데이터로 구성하여 인식함으로써 인간 시각 정보 처리와 유사한 영상 추출 및 인식 모델을 제안한다. 제안된 방법은 영상의 특징을 추출 한 후 Delta-bar-delta 기반 오류 역전파 알고리즘을 적용하여 영상의 특징들을 인식한다. 제시된 방법의 성능을 분석하기 위하여 다양한 숫자 패턴들을 대상으로 실험한 결과, 제안된 망막 세포로부터 전달된 정보를 방향성에 대한 민감성을 고려하여 영상의 특성을 추출하여 인식하는 모델이 기존의 영상 추출 및 인식 모델보다 인식률에 있어서는 별 차이가 없지만 다양한 실험에서 확인할 수 있듯이 인간 시각과 같이 인식 성능이 민감하지 않는 것을 알 수 있었다.

Intra-and Inter-frame Features for Automatic Speech Recognition

  • Lee, Sung Joo;Kang, Byung Ok;Chung, Hoon;Lee, Yunkeun
    • ETRI Journal
    • /
    • 제36권3호
    • /
    • pp.514-517
    • /
    • 2014
  • In this paper, alternative dynamic features for speech recognition are proposed. The goal of this work is to improve speech recognition accuracy by deriving the representation of distinctive dynamic characteristics from a speech spectrum. This work was inspired by two temporal dynamics of a speech signal. One is the highly non-stationary nature of speech, and the other is the inter-frame change of a speech spectrum. We adopt the use of a sub-frame spectrum analyzer to capture very rapid spectral changes within a speech analysis frame. In addition, we attempt to measure spectral fluctuations of a more complex manner as opposed to traditional dynamic features such as delta or double-delta. To evaluate the proposed features, speech recognition tests over smartphone environments were conducted. The experimental results show that the feature streams simply combined with the proposed features are effective for an improvement in the recognition accuracy of a hidden Markov model-based speech recognizer.

화자인식에서 차분을 이용한 새로운 데이터 추출 방법 (New Data Extraction Method using the Difference in Speaker Recognition)

  • 서창우;고희애;임영환;최민정;이윤정
    • 음성과학
    • /
    • 제15권3호
    • /
    • pp.7-15
    • /
    • 2008
  • This paper proposes the method to extract new feature vectors using the difference between the cepstrum for static characteristics and delta cepstrum for dynamic characteristics in speaker recognition (SR). The difference vector (DV) which it proposes from this paper is containing the static and the dynamic characteristics simultaneously at the intermediate characteristic vector which uses the deference between the static and the dynamic characteristics and as the characteristic vector which is new there is a possibility of doing. Compared to the conventional method, the proposed method can achieve new feature vector without increasing of new parameter, but only need the calculation process for the difference between the cepstrum and delta cepstrum. Experimental results show that the proposed method has a good performance more than 2.03%, on average, compared with conventional method in speaker identification (SI).

  • PDF

화자인식에 효과적인 특징벡터에 관한 비교연구 (A study on Effective Feature Parameters Comparison for Speaker Recognition)

  • 박태선;김상진;문광;한민수
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2003년도 5월 학술대회지
    • /
    • pp.145-148
    • /
    • 2003
  • In this paper, we carried out comparative study about various feature parameters for the effective speaker recognition such as LPC, LPCC, MFCC, Log Area Ratio, Reflection Coefficients, Inverse Sine, and Delta Parameter. We also adopted cepstral liftering and cepstral mean subtraction methods to check their usefulness. Our recognition system is HMM based one with 4 connected-Korean-digit speech database. Various experimental results will help to select the most effective parameter for speaker recognition.

  • PDF