• Title/Summary/Keyword: delayed CSIT

Search Result 2, Processing Time 0.014 seconds

Transmit Precoder Design for Two-User Broadcast Channel with Statistical and Delayed CSIT

  • Sun, Yanjing;Zhou, Shu;Cao, Qi;Wang, Yanfen;Liu, Wen;Zhang, Xiaoguang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2124-2141
    • /
    • 2018
  • Recent studies have revealed the efficacy of incorporating delayed channel state information at transmit side (CSIT) in transmission scheme design. This paper focuses on transmit precoder design to maximize the ergodic sum-rate in a two-user Multiple-Input Single-Output (MISO) system with delayed and statistical CSIT. A new transmit strategy which precodes signals in all transmit slots is proposed in this paper, denoted as all time-slots precoding Alternative MAT (AAMAT). There is a common procedure in conventional delayed-CSIT based schemes, which is retransmitting the overheard interferences. Since the retransmitting signal is intended to both users, all previous schemes tend to use only one antenna. We however figure out an improvement in spectral efficiency could be realized if all antennas can be utilized. In this paper, we detail the design of the procoder which enabling all antennas and also we compute a lower bound of the ergodic sum-rate in an ideal condition. In addition, simulation results demonstrate the superiority of our proposed scheme.

Degrees of Freedom of Multi-Cell MIMO Interference Broadcast Channels With Distributed Base Stations

  • Huang, Hongbing;Liu, Junyi;Zhang, Yi;Cai, Qing;Zhang, Bowei;Jiang, Fengwen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.635-656
    • /
    • 2019
  • In this paper, we investigate the degrees of freedom (DoF) of a multi-cell multi-user multiple-input multiple-output (MIMO) interference broadcast channel (IBC) with non-cooperation distributed base stations (BS), where each BS serves users of its corresponding cell. When all BSs simultaneously transmit their own signals over the same frequency band in the MIMO IBC, the edge users in each cell will suffer the inter-cell interference (ICI) and inter-user interference (IUI) signals. In order to eliminate the ICI and IUI signals, a distributed space time interference alignment (DSTIA) approach is proposed where each BS has only limited access to distributed moderately-delay channel state information at the transmitter (CSIT). It is shown that the DSTIA scheme can obtain the appreciate DoF gains. In addition, the DoF upper bound is asymptotically achievable as the number of antenna at each BS increases. It is shown that the DSTIA method can get DoF gains over other interference alignment schemes with delayed CSIT in literature. Moreover, the DSTIA method can attain higher DoFs than the IA schemes with global CSIT for certain antenna configurations.