• Title/Summary/Keyword: delay space

Search Result 637, Processing Time 0.027 seconds

Transmitter Beamforming and Artificial Noise with Delayed Feedback: Secrecy Rate and Power Allocation

  • Yang, Yunchuan;Wang, Wenbo;Zhao, Hui;Zhao, Long
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.374-384
    • /
    • 2012
  • Utilizing artificial noise (AN) is a good means to guarantee security against eavesdropping in a multi-inputmulti-output system, where the AN is designed to lie in the null space of the legitimate receiver's channel direction information (CDI). However, imperfect CDI will lead to noise leakage at the legitimate receiver and cause significant loss in the achievable secrecy rate. In this paper, we consider a delayed feedback system, and investigate the impact of delayed CDI on security by using a transmit beamforming and AN scheme. By exploiting the Gauss-Markov fading spectrum to model the feedback delay, we derive a closed-form expression of the upper bound on the secrecy rate loss, where $N_t$ = 2. For a moderate number of antennas where $N_t$ > 2, two special cases, based on the first-order statistics of the noise leakage and large number theory, are explored to approximate the respective upper bounds. In addition, to maintain a constant signal-to-interferenceplus-noise ratio degradation, we analyze the corresponding delay constraint. Furthermore, based on the obtained closed-form expression of the lower bound on the achievable secrecy rate, we investigate an optimal power allocation strategy between the information signal and the AN. The analytical and numerical results obtained based on first-order statistics can be regarded as a good approximation of the capacity that can be achieved at the legitimate receiver with a certain number of antennas, $N_t$. In addition, for a given delay, we show that optimal power allocation is not sensitive to the number of antennas in a high signal-to-noise ratio regime. The simulation results further indicate that the achievable secrecy rate with optimal power allocation can be improved significantly as compared to that with fixed power allocation. In addition, as the delay increases, the ratio of power allocated to the AN should be decreased to reduce the secrecy rate degradation.

Improvement of Microphone Away Performance in the Low Frequencies Using Modulation Technique (변조 기법을 이용한 마이크로폰 어레이의 저주파 대역 특성 개선)

  • Kim, Gi-Bak;Cho, Nam-Ik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.111-118
    • /
    • 2005
  • In this paper, we employ the modulation technique for improving the characteristics of beamformer in the low frequencies and thus improving the overall noise reduction performance. In the 1-dimensional uniform linear microphone arrays, we can suppress the narrowband noise component using the delay-and-sum beamforming. But, for the wideband noise signal, the delay-and-sum beamformer does not work well for the reduction of low frequency component because the inter-element spacing is usually set to avoid spatial aliasing at high frequencies. Hence, the beamwidth is not uniform with respect to each frequency and it is usually wider at the low frequencies. In order to obtain the beamwidth independent of frequencies, subarray systems[1][2][3][4] and multi-beamforming[5] have been proposed. However these algorithms need large space and more microphones since they are based on the theory that the size of the array is proportional to the wavelength of the input signal. In the proposed beamformer, we reduce the low frequency noise by using modulation technique that does not need additional sensors or non-uniform spacing. More Precisely, the array signals are split into subbands, and the low frequency components are shifted to high frequencies by modulation and reduced by the delay-and-sum beamforming techniques with small size microphone array. Experimental results show that the proposed technique Provides better performance than the conventional ones, especially in the low frequency band.

A Study on Correlation Processing Method of Multi-Polarization Observation Data by Daejeon Correlator (대전상관기의 다중편파 관측데이터 상관처리 방법에 관한 연구)

  • Oh, Se-Jin;Yeom, Jae-Hwan;Roh, Duk-Gyoo;Jung, Dong-Kyu;Hwang, Ju-Yeon;Oh, Chungsik;Kim, Hyo-Ryoung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.68-76
    • /
    • 2018
  • In this paper, we describe the correlation processing method of multi-polarization observation data of the Daejeon Correlator. VLBI observations include single or multiple polarized observations depending on the type of object. Polarization observations are performed to observe the characteristics of the object. During the observations of the celestial object, polarization measurements are also performed to determine the delay values and causes of changes in the object. Correlation processing of polarization observation data of the Daejeon correlator is proposed by OCTAVIA of a synchronous reproduction processing apparatus that outputs data input to each antenna unit by using an output bit selection function to convert bits and the order of the data streams is changed, And the input of the Daejeon correlator is configured to perform the polarization correlation processing by conducting correlation processing by setting the existing stream number to be the same. Correlation processing is conducted on the test data observed for the polarization correlation processing and it is verified through experiments that the polarization correlation processing method of the proposed Daejeon correlator is effective.

Estimation of the effect on the autonomic nervous system using the return-map (리턴맵을 이용한 자율신경계 영향 평가)

  • Jo, Heung-Kuk;Ye, Soo-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.2099-2104
    • /
    • 2010
  • In this paper, HRV signal which was appeared RR intervals from ECG was analyzed using return-map during anesthesia. We intended to estimate the depth of anesthesia observing the change of autonomic nervous activity(ANS) because HRV showed change of cardio-vascular system of the body according to state of ANS. Return-map analysis is to reconstruct time series of HRV to phase space after calculating delay time and embedded time. After approximating the signal distribution which was reconstructed in phase space in elliptic, we calculated the lengths of major and minor axises of the elliptic and the values was used to estimate the depth of anesthesia. Stages of the anesthesia were 7 levels to evaluate the depth of anesthesia. At induction stage of strong external stimulation, the length of major and minor axis were statistically high and at the operation stage of non-external stimulation, the values were statistically low. Conclusively, the stages of anesthesia were discriminated by HRV signal mapped in the phase space during operation.

Unmanned Lunar Exploration Failure Case Analysis (해외 무인 달 탐사 실패 사례 분석)

  • Yang, Jeong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.233-242
    • /
    • 2020
  • The history of mankind's lunar exploration began in 1958 with the United States of America "Pioneer 0" mission. In 1950s~1970s, the United States of America and Union of Soviet Socialist Republics carried out missions and experienced numerous failures to explore the moon. Since the 1990s, Japan, Europe, China and other Advanced country in Space technology have started to explore the moon and in 2016, Korea began to develop the lunar orbiter for lunar exploration. This paper analyzed the failure cases and causes of the lunar exploration in the USA and the USSR in the 1950s~1970s according to the mission purpose. Examples of mission delays, cancel, and failures that occurred during lunar exploration in post-1990s were presented. Through the investigation and analysis, this paper is intended to serve as a reference of the lunar exploration mission that Korea is working on or will be performing in the future.

Group-based Cache Sharing Scheme Considering Peer Connectivity in Mobile P2P Networks (모바일 P2P 네트워크에서 피어의 연결성을 고려한 그룹 기반 캐시 공유 기법)

  • Kim, Jaegu;Yoon, Sooyong;Lim, Jongtae;Lee, Seokhee;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.10
    • /
    • pp.20-31
    • /
    • 2014
  • Recently, cache sharing methods have been studied in order to effectively reply to user requests in mobile P2P networks. In this paper, we propose a cache sharing scheme based on a cluster considering the peer connectivity in mobile P2P networks. The proposed scheme shares caches by making a cluster that consists of peers preserving the connectivity among them for a long time. The proposed scheme reduces data duplication to efficiently use the cache space in a cluster. The cache space is divided into two parts with a data cache and a temporary cache for a cache space. It is possible to reduce the delay time when the cluster topology is changed or the cache data is replaced utilizing a temporary cache. The proposed scheme checks the caches of peers in a route to a cluster header and the caches of one-hop peers in order to reduce the communication cost. It is shown through performance evaluation that the proposed scheme outperforms the existing schemes.

On-orbit Thermal Control of MEMS Based Solid Thruster by Using Micro-igniter (MEMS 기반 고체 추력기의 마이크로 점화기를 이용한 궤도 열제어)

  • Ha, Heon-Woo;Kang, Soo-Jin;Jo, Mun-Shin;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.802-808
    • /
    • 2014
  • MEMS based solid propellant thruster researched for the purpose of an academic research will be verified at space environment through CubeSat program. For this, the temperature of the MEMS thruster should be within allowable operating temperature range by proper thermal control to prevent the ignition failure caused by ignition time delay and to guarantee the structural safety of the MEMS thruster in the low temperature. In this study, we proposed an effective thermal control strategy, that is to use micro-igniter as a heater and temperature sensor for active thermal control instead of using additional heater. The effectiveness of the strategy has been verified through on-orbit thermal analysis of CubeSats with MEMS thruster.

KTX Interior Noise Reduction Performance Comparison Using Multichannel Active Noise Control for Each Section (다중채널 능동소음제어기법을 이용한 KTX 실내소음의 구간별 저감성능 비교)

  • Jang, Hyeon-Seok;Kim, Young-Ming;Lee, Tae-Oh;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.179-185
    • /
    • 2012
  • Since the eco-era is getting closer, the importance of noise reducing in the passenger cars of high-speed train is very important. The active noise control is best choice to reduce low frequency noise because the passive one is too heavy for high speed trains where weight is so critical. Also ANC is able to reduce the ambient noise when the environmental-factor changes. To reduce a three-dimensional closed-space sound field like a car of a high-speed rail is hard to do using single channel ANC control system. We used multi-channel FXLMS algorithm which calculation speed is fast and the secondary path estimation is possible in order to take into account the physical delay in electro acoustic hardware control loudspeaker and power amplifier. Firstly, we have measured interior noise of KTX and estimated noise path in KTX test-bed. However there was some problem related to algorithm divergence and increasing the filter order. We have made a simulation of interior environment of KTX car by using three frequency bands of 120Hz, 280Hz, 360Hz as the most important for KTX ANC system. During this research the interior noise reduction of KTX car was made by using the multi-channel FXLMS algorithm. Reduction performance was evaluated and compared each other for open space section and tunnel section. in-situ experiment for the KTX noise reduction by proposed ANC was performed based on data obtained in simulation and they were compared for open space section and tunnel section as well.

추력기를 이용한 우주비행체 자세제어설계

  • Sun, Byung-Chan;Park, Yong-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.186-195
    • /
    • 2005
  • This paper deals with attitude control design for a thruster system which is mainly used as a control system of space vehicles. Attitude controllers are designed based on a simple blowing-down thruster system structure. In order to consider severe time-delay effects of the thruster system during controller design, the control design problem is defined based on the corresponding limit cycle analysis. Optimal roll controllers and optimal pitch/yaw controllers are resulted from co-evolutionary optimum design processes for each flight phase. The control performances are verified by computer simulations.

  • PDF

The Road Alignment Optimization Modelling of Intersection Based on GIS (GIS를 이용하여 교차로를 고려한 도로선형 최적화 모델링)

  • 김동하;이준석;강인준
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.341-345
    • /
    • 2003
  • This study develops modeling processes for alignment optimization considering characteristics of intersections using genetic algorithms and GIS for road alignment optimization. Since existing highway alignment optimization models have neglected the characteristics of intersections, they have shown serious weaknesses for real applications. In this paper, intersection costs include earthwork, right-of-way, pavement, accident, delay and fuel consumption costs that are sensitive and dominating to alignments. Also, local optimization of intersections for saving good alignment alternatives is developed and embedded. A highway alignment is described by parametric representation in space and vector manipulation is used to find the coordinates of intersections and other interesting points. The developed intersection cost estimation model is sufficiently precise for estimating intersection costs and eventually enhancing the performance of highway alignment optimization models. Also, local optimization of intersections can be used for improving search flexibility, thus allowing more effective intersections. It also provides a basis for extending the alignment optimization from single highways to networks. The presented two artificial examples show that the total intersection costs are substantial and sensitive to highway alignments.

  • PDF