• Title/Summary/Keyword: delay space

Search Result 637, Processing Time 0.029 seconds

Analysis of GPS Precipitable Water Vapor Variation During the Influence of a Typhoon EWINIAR (태풍 에위니아 영향력에서의 GPS 가강수량 변화 분석)

  • Song, Dong Seob;Yun, Hong Sic
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6D
    • /
    • pp.1033-1041
    • /
    • 2006
  • In this study, we calculated a space-time variation of GPS precipitable water vapor using GPS meteorology technique during a progress of the typhoon EWINIAR had made an effect on Korean peninsular at 10 July, 2006. We estimated tropospheric dry delay and wet delay for one hourly using 22 GPS permanent stations and precipitable water vapor was conversed by using surface meteorological data. The Korean weighted mean temperature and air-pressure of versa-reduction to the mean sea level have been used for an accuracy improvement of GPS precipitable water vapor estimation. Finally, we compared MTSAT water vapor image, radar image and precipitable water vapor map during a passage of the typhoon EWINIAR.

Precise Point Positioning using the BeiDou Navigation Satellite System in South Korea

  • Choi, Byung-Kyu;Cho, Chang-Hyun;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.2
    • /
    • pp.73-77
    • /
    • 2015
  • Global Positioning System (GPS) Precise Point Positioning (PPP) has been extensively used for geodetic applications. Since December 2012, BeiDou navigation satellite system has provided regional positioning, navigation and timing (PNT) services over the Asia-Pacific region. Recently, many studies on BeiDou system have been conducted, particularly in the area of precise orbit determination and precise positioning. In this paper PPP method based on BeiDou observations are presented. GPS and BeiDou data obtained from Mokpo (MKPO) station are processed using the Korea Astronomy and Space Science Institute Global Navigation Satellite System (GNSS) PPP software. The positions are derived from the GPS PPP, BeiDou B1/B2 PPP and BeiDou B1/B3 PPP, respectively. The position errors on BeiDou PPP show a mean bias < 2 cm in the east and north components and approximately 3 cm in the vertical component. It indicates that BeiDou PPP is ready for the precise positioning applications in the Asia-Pacific region. In addition, BeiDou tropospheric zenith total delay (ZTD) is compared to GPS ZTD at MKPO station. The mean value of their difference is approximately 0.52 cm.

Thermo-mechanical Design for On-orbit Verification of MEMS based Solid Propellant Thruster Array through STEP Cube Lab Mission

  • Oh, Hyun-Ung;Ha, Heon-Woo;Kim, Taegyu;Lee, Jong-Kwang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.526-534
    • /
    • 2016
  • A MEMS solid propellant thruster array shall be operated within an allowable range of operating temperatures to avoid ignition failure by incomplete combustion due to a time delay in ignition. The structural safety of the MEMS thruster array under severe on-orbit thermal conditions can also be guaranteed by a suitable thermal control. In this study, we propose a thermal control strategy to perform on-orbit verification of a MEMS thruster module, which is expected to be the primary payload of the STEP Cube Lab mission. The strategy involves, the use of micro-igniters as heaters and temperature sensors for active thermal control because an additional heater cannot be implemented in the current design. In addition, we made efforts to reduce the launch loads transmitted to the MEMS thruster module at the system level structural design. The effectiveness of the proposed thermo-mechanical design strategy has been demonstrated by numerical analysis.

Guidance Law for Near Space Interceptor based on Block Backstepping Sliding Mode and Extended State Observer

  • Guo, Chao;Liang, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.163-172
    • /
    • 2014
  • This paper proposes a novel guidance law based on the block backstepping sliding mode control and extended state observer (ESO), which also takes into account the autopilot dynamic characteristics of the near space interceptor (NSI), and the impact angle constraint of attacking the maneuvering target. Based on the backstepping control approach, the target maneuvers and the parameter uncertainties of the autopilot are regarded as disturbances of the outer loop and inner loop, respectively. Then, the ESO is constructed to estimate the target acceleration and the inner loop disturbance, and the block backstepping sliding model guidance law is employed, based on the estimated disturbance value. Furthermore, in order to avoid the "explosion of complexity" problem, first-order low-pass filters are also introduced, to obtain differentiations of the virtual control variables. The stability of the closed-loop guidance system is also proven, based on the Lyapunov theory. Finally, simulation results demonstrate that the proposed guidance law can not only overcome the influence of the autopilot dynamic delay and target maneuvers, but also obtain a small miss distance.

A Case of Transoral Approach of a Parapharyngeal Schwannoma (부인두강에 발생한 신경초종에 대한 경구강 접근법 1례)

  • Bong, Jeong-Pyo;Kim, Sung-Il;Kwon, Jang-Woo;Kim, Sung-Kyun
    • Korean Journal of Head & Neck Oncology
    • /
    • v.24 no.2
    • /
    • pp.214-216
    • /
    • 2008
  • Parapharyngeal space tumors are extremely rare accounting for about 0.5% of all head and neck tumors and treat mostly by surgical removal. Due to their inherent location, they present with varied non-specific signs and symptoms, resulting in a delay in diagnosis and unnecessary procedures, such as a 'tonsillectomy' or 'incision and drainage' of a 'quinsy'. We recently confirmed a case about a the neurilemnoma on parapharyngeal space during tonsillectomy. To present our experience with the transoral approach for parapharyngeal space tumor and describe our technique for removal of these neoplasms. Although parapharyngeal space tumours are uncommon, recognizing them would enable the correct sequence of investigations, instead of unnecessary procedures resulting in an increased morbidity for the patient.

Ethernet-Based Avionic Databus and Time-Space Partition Switch Design

  • Li, Jian;Yao, Jianguo;Huang, Dongshan
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.286-295
    • /
    • 2015
  • Avionic databuses fulfill a critical function in the connection and communication of aircraft components and functions such as flight-control, navigation, and monitoring. Ethernet-based avionic databuses have become the mainstream for large aircraft owning to their advantages of full-duplex communication with high bandwidth, low latency, low packet-loss, and low cost. As a new generation aviation network communication standard, avionics full-duplex switched ethernet (AFDX) adopted concepts from the telecom standard, asynchronous transfer mode (ATM). In this technology, the switches are the key devices influencing the overall performance. This paper reviews the avionic databus with emphasis on the switch architecture classifications. Based on a comparison, analysis, and discussion of the different switch architectures, we propose a new avionic switch design based on a time-division switch fabric for high flexibility and scalability. This also merges the design concept of space-partition switch fabric to achieve reliability and predictability. The new switch architecture, called space partitioned shared memory switch (SPSMS), isolates the memory space for each output port. This can reduce the competition for resources and avoid conflicts, decrease the packet forwarding latency through the switch, and reduce the packet loss rate. A simulation of the architecture with optimized network engineering tools (OPNET) confirms the efficiency and significant performance improvement over a classic shared memory switch, in terms of overall packet latency, queuing delay, and queue size.

Space and Time Priority Queues with Randomized Push-Out Scheme (확률적 밀어내기 정책을 가지는 공간-시간 우선순위 대기행렬)

  • Kilhwan Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.57-71
    • /
    • 2023
  • In this study, we analyze a finite-buffer M/G/1 queueing model with randomized pushout space priority and nonpreemptive time priority. Space and time priority queueing models have been extensively studied to analyze the performance of communication systems serving different types of traffic simultaneously: one type is sensitive to packet delay, and the other is sensitive to packet loss. However, these models have limitations. Some models assume that packet transmission times follow exponential distributions, which is not always realistic. Other models use general distributions for packet transmission times, but their space priority rules are too rigid, making it difficult to fine-tune service performance for different types of traffic. Our proposed model addresses these limitations and is more suitable for analyzing communication systems that handle different types of traffic with general packet length distributions. For the proposed queueing model, we first derive the distribution of the number of packets in the system when the transmission of each packet is completed, and we then obtain packet loss probabilities and the expected number of packets for each type of traffic. We also present a numerical example to explore the effect of a system parameter, the pushout probability, on system performance for different packet transmission time distributions.

Robust Transfer Alignment Method based on Krein Space (크레인 공간에 기반한 강인한 전달정렬 기법)

  • Sung-Hye Choe;Ki-Young Park;Hyoung-Min Kim;Cheol-Kwan Yang
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.543-549
    • /
    • 2021
  • In this paper, a robust transfer alignment method is proposed for a strapdown inertial navigation system(SDINS) with norm-bounded parametric uncertainties. The uncertainties are described by the energy bound constraint, i.e., sum quadratic constraint(SQC). It is shown that the SQC can be coverted into an indefinite quadratic cost function in the Krein space. Krein space Kalman filter is designed by modifying the measurement matrix and the variance of measurement noises in the conventional Kalman filter. Since the proposed Krein space Kalman filter has the same recursive structure as a conventional Kalman filter, the proposed filter can easily be designed. The simulation results show that the proposed filter achieves robustness against measurement time delay and high dynamic environment of the vehicle.

A Study on Low Power Force-Directed scheduling for Optimal module selection Architecture Synthesis (최적 모듈 선택 아키텍쳐 합성을 위한 저전력 Force-Directed 스케쥴링에 관한 연구)

  • Choi Ji-young;Kim Hi-seok
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.459-462
    • /
    • 2004
  • In this paper, we present a reducing power consumption of a scheduling for module selection under the time constraint. A a reducing power consumption of a scheduling for module selection under the time constraint execute scheduling and allocation for considering the switching activity. The focus scheduling of this phase adopt Force-Directed Scheduling for low power to existed Force-Directed Scheduling. and it constructs the module selection RT library by in account consideration the mutual correlation of parameters in which the power and the area and delay. when it is, in this paper we formulate the module selection method as a multi-objective optimization and propose a branch and bound approach to explore the large design space of module selection. Therefore, the optimal module selection method proposed to consider power, area, delay parameter at the same time. The comparison experiment analyzed a point of difference between the existed FDS algorithm and a new FDS_RPC algorithm.

  • PDF

Analysis of Temporal and Spatial Variation of Precipitable Water Vapor According to Path of Typhoon EWINIAR using GPS Permanent Stations

  • Won, Jihye;Kim, Dusik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.2
    • /
    • pp.87-95
    • /
    • 2015
  • In this study, the temporal and spatial variation in precipitable water vapor (PWV) was analyzed for typhoon Ewiniar which had made landfall in the Korean peninsula in 2006. To make a contour map of PWV, zenith total delay (ZTD) was calculated using about 60 GPS permanent stations in Korea, and the pressure and temperature data of nearby AWS stations were interpolated and applied to the equation for calculating the PWV. While Typhoon Ewiniar was migrating north from the southern coast to the eastern coast of Korea, the PWV migrated showing a spatial distribution similar to that of rainfall. Also, the fluctuating pattern of the normalized PWV was analyzed, and the moving speed of the PWV was estimated using the delay time of the increase/decrease pattern in the eight-test stations. The result indicated that the moving speed of the PWV was about 35 km/h, which was similar to the average moving speed of the typhoon (38.9 km/h).