• Title/Summary/Keyword: delay filter

Search Result 581, Processing Time 0.028 seconds

A Study on the Polyphase Filter using the All-Pass IIR Filter (올패스 IIR 필터를 사용한 폴리페이저 필터에 관한 연구)

  • 김승영;김남호
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.165-168
    • /
    • 2000
  • In this paper, the polyphase filter which has good ripple characteristic in the passband is proposed. This filter consists of the digital all-pass filter of parallel structure and it is the half-band filter with all zeros in unit circle. To approach easily in designing hardware, we determined the coefficients to the 16bit 1.15 format. To evaluate the performance of this filter, we analyzed the phase characteristic in each branch and simulated each filter with small coefficients. From the result, we have got to good ripple characteristic and also analyzed the fifth and the seventh, and compared them with four part : ripple, group delay, transition bandwidth, stopband attenuation.

  • PDF

A Method for Estimating an Instantaneous Phasor Based on a Modified Notch Filter

  • Nam Soon-Ryul;Sohn Jin-Man;Kang Sang-Hee;Park Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.279-286
    • /
    • 2006
  • A method for estimating the instantaneous phasor of a fault current signal is proposed for high-speed distance protection that is immune to a DC-offset. The method uses a modified notch filter in order to eliminate the power frequency component from the fault current signal. Since the output of the modified notch filter is the delayed DC-offset, delay compensation results in the same waveform as the original DC-offset. Subtracting the obtained DC-offset from the fault current signal yields a sinusoidal waveform, which becomes the real part of the instantaneous phasor. The imaginary part of the instantaneous phasor is based on the first difference of the fault current signal. Since a DC-offset also appears in the first difference, the DC-offset is removed trom the first difference using the results of the delay compensation. The performance of the proposed method was evaluated for a-phase to ground faults on a 345kV 100km overhead transmission line. The Electromagnetic Transient Program was utilized to generate fault current signals for different fault locations and fault inception angles. The performance evaluation showed that the proposed method can estimate the instantaneous phasor of a fault current signal with high speed and high accuracy.

Robust Internal Model Control of Three-Phase Active Power Filter for Stable Operation in Electric Power Equipment (전력설비의 안정한 운용을 위한 3상 능동전력필터의 강인한 내부모델제어)

  • Park, Ji-Ho;Kim, Dong-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1487-1493
    • /
    • 2013
  • A new simple control method for active power filter, which can realize the complete compensation of harmonics is proposed. In the proposed scheme, a model-based digital current control strategy is presented. The proposed control system is designed and implemented in a form referred to as internal model control structure. This method provides a convenient way for parameterizing the controller in term of the nominal system model, including time-delays. As a result, the resulting controller parameters are directly set based on the power circuit parameters, which make tuning of the controllers straightforward task. In the proposed control algorithm, overshoots and oscillations due to the computation time delay is prevented by explicit incorporating of the delay in the controller transfer function. In addition, a new compensating current reference generator employing resonance model implemented by a DSP(Digital Signal Processor) is introduced. Resonance model has an infinite gain at resonant frequency, and it exhibits a band-pass filter. Consequently, the difference between the instantaneous load current and the output of this model is the current reference signal for the harmonic compensation.

A Novel Equivalent Wiener-Hopf Equation with TDL coefficient in Lattice Structure

  • Cho, Ju-Phil;Ahn, Bong-Man;Hwang, Jee-Won
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.500-504
    • /
    • 2011
  • In this paper, we propose an equivalent Wiener-Hopf equation. The proposed algorithm can obtain the weight vector of a TDL(tapped-delay-line) filter and the error simultaneously if the inputs are orthogonal to each other. The equivalent Wiener-Hopf equation was analyzed theoretically based on the MMSE(minimum mean square error) method. The results present that the proposed algorithm is equivalent to original Wiener-Hopf equation. The new algorithm was applied into the identification of an unknown system for evaluating the performance of the proposed method. We compared the Wiener-Hopf solution with the equivalent Wiener-Hopf solution. The simulation results were similar to those obtained in the theoretical analysis. In conclusion, our method can find the coefficient of the TDL (tapped-delay-line) filter where a lattice filter is used, and also when the process of Gram-Schmidt orthogonalization is used. Furthermore, a new cost function is suggested which may facilitate research in the adaptive signal processing area.

A Virtual RLC Active Damping Method for LCL-Type Grid-Connected Inverters

  • Geng, Yiwen;Qi, Yawen;Zheng, Pengfei;Guo, Fei;Gao, Xiang
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1555-1566
    • /
    • 2018
  • Proportional capacitor-current-feedback active damping (AD) is a common damping method for the resonance of LCL-type grid-connected inverters. Proportional capacitor-current-feedback AD behaves as a virtual resistor in parallel with the capacitor. However, the existence of delay in the actual control system causes impedance in the virtual resistor. Impedance is manifested as negative resistance when the resonance frequency exceeds one-sixth of the sampling frequency ($f_s/6$). As a result, the damping effect disappears. To extend the system damping region, this study proposes a virtual resistor-inductor-capacitor (RLC) AD method. The method is implemented by feeding the filter capacitor current passing through a band-pass filter, which functions as a virtual RLC in parallel with the filter capacitor to achieve positive resistance in a wide resonance frequency range. A combination of Nyquist theory and system close-loop pole-zero diagrams is used for damping parameter design to obtain optimal damping parameters. An experiment is performed with a 10 kW grid-connected inverter. The effectiveness of the proposed AD method and the system's robustness against grid impedance variation are demonstrated.

Inter Coding using DST-based Interpolation Filter (DST 기반 보간 필터를 이용한 인터 코딩)

  • Kim, MyungJun;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.321-326
    • /
    • 2017
  • High Efficiency Video Coding (HEVC) adopted the Discrete Cosine Transform-II (DCT-II) based interpolation filter to improve coding efficiency in motion compensation and estimation. In HEVC, the interpolation filters based on the DCT-II are composed of 8-point for half-pixel and 7-point for 1/4-pixel and 3/4-pixel. In this paper, a DST-VII based interpolation filter is used improve motion compensation and estimation. The experimental results which applied the DST-VII interpolation filter are presented. They show the 0.45% of average bitrate reduction in Random Access configuration and 0.5% of average bitrate reduction in Low Delay B configuration, respectively.

Performance Improvement of ANC System for Wireless Headset (무선헤드셋을 위한 능동 잡음 제거기의 성능 개선)

  • Park, Sung-Jin;Kim, Suk-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6C
    • /
    • pp.343-348
    • /
    • 2011
  • This paper introduces a design for real time wireless headset using ANC (active noise control) system based on NFxLMS adaptive filter algorithm. The training time of the proposed system is significantly reduced by using the RMS delay spread of a channel as an error correction parameter, and convergence rate of the FxLMS filter has been improved with updating the coefficients of the NFxLMS filter, which we have got during the training process. Our system has shorter training time and better convergence rate at the same noise reduction level than the conventional system under real noisy environment.

Shock Waveform Synthesis Methods for Shock Response Spectrum over Short Time Interval, Digital Filter for Obtaining Shock Response History and Applications Thereof (충격응답 스펙트럼이 나타나는 시간들의 차이가 짧은 충격파형의 합성방법 및 충격응답 내역을 구하는 디지털 필터)

  • Yoon, Eul-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.73-82
    • /
    • 2005
  • This paper describes shock waveform synthesis methods for a shock response spectnlm over a short time interval with which intereference between parts within a test item is increased to perform a sufficient shock test for damage or malfunction which may be caused by the interference between parts, and a digital filter for obtaining a shock response history required for the shock waveform synthesis and a digital inverse filter for restoration by inversely using the digital filter. The time at which the maximax value occurs in the response history is detected in order to establish a delay time which is one of the parameters in the wavelet, on the condition that the natural frequency of SDOF system with a Q (quality factor) of 10 equals to the wavelet frequency of the zero delay wavelet input. A shock response spectrum over a short time interval and an abrupt change in the acceleration for an instant are illustrated as features of the synthesized waveform.

Optimization of Wind Power Dispatch to Minimize Energy Storage System Capacity

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1080-1088
    • /
    • 2014
  • By combining a wind turbine with an energy storage system (ESS), we are able to attenuate the intermittent wind power characteristic making the power derived from a wind farm dispatchable. This paper evaluates the influence of the phase delay of the low-pass filter in the conventional smoothing power control on the ESS capacity; longer phase delays require a larger ESS capacity. In order to eliminate the effect of the phase delay, we optimize the power dispatch using a zero-phase low-pass filter that results in a non-delayed response in the power dispatch. The proposed power dispatching method significantly minimizes the ESS capacity. In addition, the zero-phase low-pass filter, which is a symmetrical forward-reverse finite impulse response type, is designed simply with a small number of coefficients. Therefore, the proposed dispatching method is not only optimal, but can also be feasibly applied to real wind farms. The efficacy of the proposed dispatching method is verified by integrating a 3 MW wind turbine into the grid using wind data measured on Jeju Island.

A Control Algorithm of Single Phase Active Power Filter based on Rotating Reference Frame (회전좌표계를 이용한 단상능동전력필터의 제어이론)

  • Kim, Jin-Sun;Kim, Young-Seok;Shin, Jae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1480-1482
    • /
    • 2005
  • The major causes of power quality deterioration are harmonic current through semiconductor switching device, due to use of nonlinear loads such as diodes rectifier or thyristor rectifiers. In response to this concerns, this paper presents a new control method of single-phase active power filter(APF) for the compensation of harmonic current components in nonlinear loads. In order to make the complex calculation to be possible, the single-phase system that has two phases was made by constructing a imaginary second-phase giving time delay to load currents. In the conventional method, a imaginary-phase lagged to the load current T/4(here T is the fundamental cycle) was made. But in this proposed method, the new signal, which has the delayed phase through the filter, using the phase-delay property of low-pass filter, was used as the second phase. As this control method is applied to the system of single phase, an instantaneous calculation was done rather by using the rotating reference frames that synchronizes with source-frequency than by applying instantaneous reactive power theory that uses the conventional fixed reference frames.

  • PDF