• Title/Summary/Keyword: delamination damage

Search Result 204, Processing Time 0.025 seconds

Evaluation of Delamination Behavior in Hybrid Composite Using the Crack Length and the Delamination Width (균열길이와 층간분리 폭의 관계를 이용한 하이브리드 복합재의 층간분리 거동 평가)

  • 송삼홍;김철웅
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.55-62
    • /
    • 2004
  • Although the previous researches evaluated the fatigue behavior of glass fiber/epoxy laminates using the traditional fracture mechanism, their researches were not sufficient to do it: the damage zone of glass fiber/epoxy laminates was occurred at the delamination zone instead of the crack-metallic damages. Thus, previous researches were not applicable to the fatigue behavior of glass fiber/epoxy laminates. The major purpose of this study was to evaluate delamination behavior using the relationship between crack length and delamination width in hybrid composite material such as Al/GFRP laminate. The details of investigation were as follows : 1) Relationship between crack length and delamination width, 2) Relationship between delamination aspect ratio and delamination area rate, 3) Variation of delamination growth rate is attendant on delamination shape factors. The test results indicated that the delamination growth rate depends on delamination width delamination aspect ratio and delamination shape factors.

Improvement of Out-of-Plane Impact Damage Resistance of CFRP Due to Through-the-Thickness Stitching

  • Yoshimura, Akinori;Nakao, Tomoaki;Takeda, Nobuo
    • Advanced Composite Materials
    • /
    • v.18 no.2
    • /
    • pp.121-134
    • /
    • 2009
  • The present study investigated, both experimentally and numerically, the improvement of low-velocity impact damage resistance of carbon fiber reinforced plastic (CFRP) laminates due to through-the-thickness stitching. First, we conducted drop-weight impact tests for stitched and unstitched laminates. The results of damage inspection confirmed that stitching did improve the impact damage resistance, and revealed that the improvement effect became greater as the impact energy increased. Moreover, the stitching affected the through-the-thickness damage distribution. Next, we performed FEM analysis and calculated the energy release rate of the delamination crack using the virtual crack closure technique (VCCT). The numerical results revealed that the stitching affected the through-the-thickness damage distribution because the stitch threads had a marked effect on decreasing both the modes I and II energy release rate around the bottom of the laminate. Comparison of the results for models that contained delaminations of various sizes revealed that the energy release rate became lower as delamination size increased; therefore the stitching improved the impact resistance more effectively when the impact energy was higher.

Impact Damage of Honeycomb Sandwich Antenna Structures (통신 안테나용 허니콤 샌드위치 구조물의 충격 손상에 관한 연구)

  • 조성재;김차겸;박현철;황운봉
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.74-77
    • /
    • 2001
  • The impact response and damage of CLAS panel was investigated experimentally. The facesheet material used was RO4003 woven-glass hydrocarbon/ceramic and the core material was Nomex honeycomb with a cell size of 3.2mm and a density of 96 kg/$\textrm{m}^{3}$. The shield plane used was RO4003 and 2024-T3 aluminum. Static indentation and impact test was conducted to characterize the type and extent of the damage observed in two CLAS panels, and the performance of antenna used in a wireless LAN system. Correlation of peak contact force, residual indentation and the delamination area shows impact damage of the panel with an aluminum shield plane is larger than that of the panel with RO4003 shield plane, although tile former is more penetration resistant. The damage was observed by naked eye, ultrasonic inspection and cross sectioning. The shape and size of delamination was estimated by ultrasonic inspection, and the area of delamination linearly increases as impact energy increases. The performance of impact damaged antenna was estimated by measuring return loss and radiation pattern.

  • PDF

Experimental Study of Buckling Behavior of Composite Laminates with an Embedded Delamination (내재된 층간분리가 존재한 복합재 적층판의 좌굴거동에 대한 실혐 연구)

  • Kim, Hyo-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2491-2500
    • /
    • 1996
  • An experimental and analytical investigation is performed to study the buckling behavior of composite laminates with an embedded delamination. It is of particular interest to veryfy whether delamination growth cddurs with continuming deformation after buckling of composite laminates with an embedded delamination. Experiments are conducted for [0/sub 4///90/sub 8//0/sub 4/]/sub r/ laminates with delamination size in which local buckling mode governs buckling. Results show that delamination growth occurs in hgigher load after buckling and is accompanid by other damage mechanisms such as splitting. Also, it is found that transverse deformation before difurcation buckling is due to initial imperfection and structure such as plate with small bending stiffness is sensitive to that.

Investigation on low velocity impact on a foam core composite sandwich panel

  • Xie, Zonghong;Yan, Qun;Li, Xiang
    • Steel and Composite Structures
    • /
    • v.17 no.2
    • /
    • pp.159-172
    • /
    • 2014
  • A finite element model with the consideration of damage initiation and evolution has been developed for the analysis of the dynamic response of a composite sandwich panel subject to low velocity impact. Typical damage modes including fiber breakage, matrix crushing and cracking, delamination and core crushing are considered in this model. Strain-based Hashin failure criteria with stiffness degradation mechanism are used in predicting the initiation and evolution of intra-laminar damage modes by self-developed VUMAT subroutine. Zero-thickness cohesive elements are adopted along the interface regions between the facesheets and the foam core to simulate the initiation and propagation of delamination. A crushable foam core model with volumetric hardening rule is used to simulate the mechanical behavior of foam core material at the plastic state. The time history curves of contact force and the core collapse area are obtained. They all show a good correlation with the experimental data.

Progressive Damage Modeling of Inter and Intra Laminar Damages in Open Hole Tensile Composite Laminates (오픈 홀 인장 복합 재료 적층판에서 층간 및 내부 손상에 대한 점진적 손상 모델링)

  • Khalid, Salman;Kim, Heung Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.233-240
    • /
    • 2019
  • Open-hole tensile tests are usually performed to measure the tensile strengths of composites as they are an essential parameter for designing composite structures. However, correctly modeling the tensile test is extremely challenging as it involves various damages such as fiber and matrix damage, delamination, and debonding damage between the fiber and matrix. Therefore, a progressive damage model was developed in this study to estimate the in-plane failure and delamination between the fiber and matrix. The Hashin damage model and cohesive zone approach were used to model ply and delamination failures. The results of the present model were compared with previously published experimental and numerical findings. It was observed that neglecting delamination during finite element analysis led to overestimation of tensile strength.

Detecting width-wise partial delamination in the composite beam using generalized fractal dimension

  • Kumar, S. Keshava;Ganguli, Ranjan;Harursampath, Dineshkumar
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.91-103
    • /
    • 2017
  • Generalized fractal dimension is used to detect the presence of partial delamination in a composite laminated beam. The effect of boundary conditions and location of delamination on the fractal dimension curve is studied. Appropriability of higher mode shape data for detection of delamination in the beam is evaluated. It is shown that fractal dimension measure can be used to detect the presence of partial delamination in composite beams. It is found that the torsional mode shape is well suited for delamination detection in beams. First natural frequency of delaminated beam is found to be higher than the healthy beam for certain small and partial width delaminations and some boundary conditions. An explanation towards this counter intuitive phenomenon is provided.

Delamination Evaluation of Thermal Barrier Coating on Turbine Blade owing to Isothermal Degradation Using Ultrasonic C-scan Image (초음파 C-scan을 이용한 터빈 블레이드 열차폐코팅의 등온열화에 의한 박리 평가 기법)

  • Lee, Ho-Girl;Kim, Hak-Joon;Song, Sung-Jin;Seok, Chang-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.353-362
    • /
    • 2016
  • Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at $1,100^{\circ}C$ with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived.

Development of the Delamination Evaluation Parameters (I) -The Delamination Aspect Ratio and the Delamination Shape Factors-

  • Song, Sam-Hong;Oh, Dong-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1932-1940
    • /
    • 2004
  • Although the previous researches evaluated the fatigue behavior of Al/GFRP laminates using the traditional fracture mechanism, their researches were not sufficient to do it : the damage zone of Al/GFRP laminates was occurred at the delamination zone instead of the crack-metallic damages. Thus, previous researches were not applicable to the fatigue behavior of Al/GFRP laminates. The major purpose of this study was to evaluate delamination behavior using the relationship between crack length (a) and delamination width (b) in Al/GFRP laminate. The details of investigation were as follows: 1) Relationship between the crack length (a) and the delamination width (b), 2) Relationship between the delamination aspect ratio (b/a) and the delamination area rate ((A$\_$D/)/subN// (A$\_$D/)$\_$All/), 3) The effect of delamination aspect ratio (b/a) on the delamination shape factor (f$\_$s/) and the delamination growth rate (dA$\_$D// da). As results, it was known that the delamination aspect ratio (b/a) was decreased and the delamination area rate ((A$\_$D/)$\_$N// (A$\_$D/)$\_$All/) was increased as the normalized crack size (a/W) was increased. And, the delamination shape factors (f$\_$s/) of the ellipse-II(f$\_$s3/) was greater than of the ellipse-I(f$\_$s2/) but that of the triangle (f$\_$s1/) was less than of the ellipse-I(f$\_$s2/).

Visualization of Delamination Region in Concrete Structures using Mode Shapes of Delaminated Concrete Section (II) : Impact-Echo Test (박리된 콘크리트의 진동 모드 형상을 이용한 콘크리트 구조물 박리 손상 영역 가시화 (II) : 충격-반향 시험)

  • Oh, Taekeun;Shin, Sung Woo
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.36-41
    • /
    • 2013
  • Previous study showed that delamination region in concrete structures can be successfully visualized using mode shapes of delaminated concrete section. However, modal tests for this purpose to obtain mode shapes of the delaminated concrete section may not be applicable in practice since, to correctly obtain the mode shapes of the section, the location and the shape of the delamination region in a structure should be known in advance. Unfortunately those are normally unknown in a real structure. Therefore, a moving forward test method may be useful to obtain the mode shapes of the concrete section when the location and the shape of the delamination region are not known. In this study, impact-echo testing based mode shape estimation technique is proposed and experimentally validated for visualization of delamination region.