• Title/Summary/Keyword: dehydration reactions

Search Result 37, Processing Time 0.022 seconds

Experimental Study on the Synthesis of Dimethyl Ether (디메틸에테르 합성 반응의 실험적 연구)

  • Choi, Chang Woo;Cho, Wonihl;Baek, Young Soon;Row, Kyung Ho
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.125-131
    • /
    • 2006
  • Dimethyl ether (DME) is a new clean fuel as an environmentally-benign energy resource. DME can be manufactured from various energy sources including natural gas, coal, biomass and spent plastic. In addition to its environmentally friendly properties, DME has similar characteristics to those of LPG. Therefore, it is considered as an excellent substitute fuel for LPG, fuel cells, power plant, and especially diesel and is expected to be the alternative fuel by 2010. The experimental study of the direct synthesis of DME was investigated under various conditions over a temperature range of $220{\sim}280^{\circ}C$, syngas ratio 1.2~3.0. All experiments were carried out with a hybrid catalyst, composed of a methanol synthesis catalyst ($Cu/ZnO/Al_2O_3$) and a dehydration catalyst (${\gamma}-Al_2O_3$). The observed reaction rate follows qualitatively a Langmiur-Hinshellwood model as the reaction mechanism. Such a mechanism is considered with three reactions; methanol synthesis, methanol dehydration and water gas shift reaction. From a surface reaction with dissociative adsorption of hydrogen, methanol, and water, individual reaction rate was determined.

Dehydration Reaction of Phosphogypsum in a Fluidized Bed Reactor (유동화 반응조에서의 인산석고의 탈수반응에 관한 연구)

  • Il Hyun Park;Shin Hwan Ihn;Youn Soo Sohn
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.329-336
    • /
    • 1980
  • A domestic phosphogypsum was calcined in a batch type fluidized bed reactor at various reaction temperatures ranging 90∼180$^{\circ}$ without and with an alkaline additive amounting up to 5% of gypsum, and physical properties of the resultant products were compared following their characterization by X-ray diffraction pattern and DTA. It has been found that dehydration reactions were uniformly carried out in the fluidized bed reactor and only hemihydrate was obtained at 90$^{\circ}$ whereas at higher temperatures dehydration reaction progressed further. When gypsum was charged to the reactor preheated at over 140$^{\circ}$, a considerable degree of dehydration occurred before the reactant reached the initially set reactor temperature and in particular, at over 160$^{\circ}$ most of dehydration reaction was performed prior to the present reactor temperature. However, it has been found that gypsum mostly transforms into hemihydrate around the reactant temperature of 140$^{\circ}$ while transformation into anhydrite mostly occurs around $160^{\circ}C.$ When calcium hydroxide was added to gypsum in the reactor, the optimum physical properties of the calcined product were obtained at the weight ratio of $Ca(OH_2)/P_2O_5$ = 3.2.

  • PDF

Catalytic and Acidic Properties of TiO2-SiO2 Unmodified and Modified with H2SO4 (TiO2-SiO2 및 H2SO4으로 개질된 TiO2-SiO2의 촉매특성과 산 성질)

  • Sohn, Jong-Rack;Jang, Hyang-Ja
    • Applied Chemistry for Engineering
    • /
    • v.1 no.1
    • /
    • pp.35-43
    • /
    • 1990
  • A series of $TiO_2-SiO_2$catalysts were prepared by coprecipitation from the mixed solution of titanium tetrachloride and sodium silicate. Some of the samples were treated with 1N $H_2SO_4$ and used as modified catalysts. The catalytic activities of modified catalysts were higher than those of unmodified catalysts, and the effect of modification on the catalytic activity was higher for 2 - propanol dehydration than for cumene dealkylation. The catalytic activity of unmodified catalysts was correlated with their acid amount for the above two reactions. As $TiO_2-SiO_2$ catalysts had relatively large amount of weak acid sites and small amount of strong acid sites, the catalytic activity for 2 - propanol dehydration was higher than that for cumene dealkylation. The effect of modification on catalytic activity increased with increasing $TiO_2$content of the catalysts. Actually, $92-TiO_2-SiO_2/SO_4{^2}$had the highest increment in catalytic activity and $10-TiO_2-SiO_2/SO_4{^2}$had the lowest increment for the 2 - propanol dehydration.

  • PDF

Catalytic Reactions of Ethanol and Acetaldehyde Over $TiO_2$-supported Gold Catalysts

  • Kim, Jeong-Jin;Kim, Yu-Gwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.264-264
    • /
    • 2012
  • As an environment-friendly alternative energy resource, ethanol may be used to obtain hydrogen, a clean energy source. Thus, studies on catalytic reactions involving ethanol have been studied to understand the underlying principles in the reaction mechanism using various oxide-supported catalysts. Among them, Au-based catalysts have shown a superior activity in producing hydrogen gas. In the present study, Au/$TiO_2$ catalysts were prepared by deposition-precipitation method to understand their catalytic activities toward ethanol and acetaldehyde with increasing gold loading, especially at the very low Au loading regime. A commercially available $TiO_2$ (Degussa P-25) was employed and the Au loading was varied to 0, 0.1, 0.5, and 1.0 wt% respectively. The catalysts showed characteristic x-ray diffraction (XRD) features at $2{\theta}=78.5^{\circ}$ that could be assigned to the presence of gold nanoparticles. Its reactivity measurements were performed under a constant flow of ethanol and acetaldehyde at a flow rate of ${\sim}0.6{\mu}mol/sec$ and the substrate temperature was slowly raised at a rate of 0.2 K/sec. We observed that the overall reactivity of the catalysts increased with increasing Au loading along with selectivity favoring dehydrogenation to product hydrogen gas. In addition, we disclosed various reaction channels involving competitive reaction paths such as dehydrogenation, dehydration, and condensation. In addition, subsequent reactions of acetaldehyde obtained from dehydrogenation of ethanol, were found to occur and produce butene, crotonaldehyde, furan, and benzene. Based on the results, we proposed overall reaction pathways of such reaction channels.

  • PDF

The Antioxidant Activity of Gingerol (Gingerol의 산화방지 효과)

  • Lee, In-Kyung;Ahn, Seung-Yo
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.55-59
    • /
    • 1985
  • Antioxidant activity of gingerol, a component of ginger, was studied in ${\beta}-carotene-linoleic$ acid-water emulsion system. Crude gingerol extracted from ginger was separated and purified by thin-layer chromatography (TLC) into two bands. The two bands were identified as 6- and 10-gingerol by color reactions on TLC plate, acid dehydration reaction, infrared and nuclear magnetic resonance spectrometry. The antioxidant activity of gingerols (mixture of 6- and 10-gingerol) separated from ginger was remarkable, but lower than that of BHA or BHT.

  • PDF

Carbonylation of Benzyl Alcohols and Benzyl Bromide to Phenylacetic Acids with Rhodium(Ⅰ) and Iridium(Ⅰ) Complexes

  • Chin Chong Shik;Jung Ho Jin;Hong Seung-gweon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.391-395
    • /
    • 1992
  • Rhodium(I) and iridium(II) complexes, M(Cl$O_4$)(CO)$(PPh_3)_2$ and [M(CO)$(PPh_3)_3$]Cl$O_4$ (M = Rh, Ir), and RhX(CO)$(PPh_3)_2$ (X = Cl, Br, OH) catalyze the carbonylation of benzyl alcohols to produce phenylacetic acids under 6 atm of CO at $110^{\circ}C$ in deuterated chloroform. Benzyl alcohols initially undergo dehydration to give dibenzyl ethers which are then carbonylated to benzyl phenylacetates, and the hydrolysis of benzyl phenylacetate produces phenylacetic acids and benzyl alcohols. The carbonylation is accompanied with dehydrogenation followed by hydrogenolysis of benzyl alcohols giving benzaldehydes and methylbenzenes which are also produced by CO2 elimination of phenylacetic acids. Phenylacetic acid is also produced in the reactions of benzyl bromide with CO catalytically in the presence of Rh(Cl$O_4$)(CO)$(PPh_3)_2$ and $H_2O$, and stoichiometrically with Rh(OH)(CO)$(PPh_3)_2$ in the absence of $H_2O$.

Formal Synthesis of Isocomene

  • Hyo Won Lee;Jae Hyun Lee;Ihl-Young Choi Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.392-397
    • /
    • 1991
  • A stereocontrolled synthesis of (${\pm}$)-isocomene (1) via selective monoketalization of tricyclo[6.3.0.$0^{1.5}$]undeca-4,7-dione(13) was reported. Grignard reaction of bicyclic enone 10, which was prepared from 2-methyl-1,3-cyclopentadione, gave the 1,4-addition product 11. The subsequent aldol condensation product 12 was converted to mesyl derivative 13. Transformation from 13 to the desired product 19 was achieved by a series of reactions, i.e., the selective monoketalization at C-4 carbonyl group, the elimination of a mesyl group, Birch alkylation, methylation at C-6, the reduction of carbonyl group, the dehydration of alcohol 18, and hydrolysis of the ketal group.

NiO/La2O3-ZrO2/WO3 Catalyst Prepared by Doping ZrO2 with La2O3 and Modifying with WO3 for Acid Catalysis

  • Sohn, Jong-Rack;Choi, Hee-Dong;Shin, Dong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.821-829
    • /
    • 2006
  • A series of catalysts, $NiO/La_2O_3-ZrO_2/WO_3$, for acid catalysis was prepared by the precipitation and impregnation methods. For the $NiO/La_2O_3-ZrO_2/WO_3$ samples, no diffraction lines of nickel oxide were observed, indicating good dispersion of nickel oxide on the catalyst surface. The catalyst was amorphous to X-ray diffraction up to 300 ${^{\circ}C}$ of calcination temperature, but the tetragonal phase of $ZrO_2$ and monoclinic phase of $WO_3$ by the calcination temperatures from 400 ${^{\circ}C}$ to 700 ${^{\circ}C}$ were observed. The role of $La_2O_3$ in the catalyst was to form a thermally stable solid solution with zirconia and consequently to give high surface area and acidity. The high acid strength and high acidity were responsible for the W=O bond nature of complex formed by the modification of $ZrO_2$ with $WO_3$. For 2-propanol dehydration the catalyst calcined at 400 ${^{\circ}C}$ exhibited the highest catalytic activity, while for cumene dealkylation the catalyst calcined at 600 ${^{\circ}C}$ showed the highest catalytic activity. 25-$NiO/5-La_2O_3-ZrO_2/15-WO_3$ exhibited maximum catalytic activities for two reactions due to the effects of $WO_3$ modifying and $La_2O_3$ doping.

Physicochemical and Catalytic Properties of NiSO4/CeO2-ZrO2 Catalyst Promoted with CeO2 for Acid Catalysis

  • Sohn, Jong-Rack;Shin, Dong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1265-1272
    • /
    • 2007
  • A solid acid catalyst, NiSO4/CeO2-ZrO2 was prepared simply by promoting ZrO2 with CeO2 and supporting nickel sulfate on CeO2-ZrO2. The support of NiSO4 on ZrO2 shifted the phase transition of ZrO2 from amorphous to tetragonal to higher temperatures because of the interaction between NiSO4 and ZrO2. The surface area of 10-NiSO4/1-CeO2-ZrO2 promoted with CeO2 and calcined at 600 oC was very high (83 m2/g) compared to that of unpromoted 10-NiSO4/ZrO2 (45 m2/g). This high surface area of 10-NiSO4/1-CeO2-ZrO2 was due to the promoting effect of CeO2 which makes zirconia a stable tetragonal phase as confirmed by XRD. The role of CeO2 was to form a thermally stable solid solution with zirconia and consequently to give high surface area and acidity of the sample, and high thermal stability of the surface sulfate species. 10-NiSO4/1- CeO2-ZrO2 containing 1 mol% CeO2 and 10 wt% NiSO4, and calcined at 600 oC exhibited maximum catalytic activities for both reactions, 2-propanol dehydration and cumene dealkylation.

Orientational Control of Nano Structures from Block Copolymer Using Homo-Polymer Nano Interface (단일 성분 고분자 나노 계면의 도입을 통한 블락 고분자 박막의 나노 구조 배향 조절)

  • In, Insik
    • Journal of Adhesion and Interface
    • /
    • v.9 no.4
    • /
    • pp.30-33
    • /
    • 2008
  • Two polymeric interfaces with single component homo-polymers were prepared to control the orientation of block copolymer thin-film nanostructures. Poly(4-acetoxy styrene) (OH-PAS) and poly(4-methoxy styrene) (OH-PMS) which have the average chemical composition of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) were precisely synthesized through nitroxide-mediated radical polymerization. After dehydration reactions between above polymers and SiOx layers of silicon wafers, the polymer-modified interface induced partial (30%) vertical orientation of PS-b-PMMA thin film in the case of OH-PMS and wholly parallel orientation in the case of OH-PAS. Chemical compositions of polymeric interface layers are regarded as the key parameter to control the orientation of nanostructures of block copolymer thin film.

  • PDF