• Title/Summary/Keyword: degree-of-freedom (DOF)

Search Result 348, Processing Time 0.029 seconds

Design of a Digital Adaptive Flight Control Law for the ALFLEX

  • Ito, Hideya;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.519-524
    • /
    • 2003
  • In this report, a longitudinal adaptive flight control law is presented for the automatic landing system of a Japanese automatic landing flight experiment vehicle (ALFLEX). The longitudinal adaptive flight control law is designed to track an output of the vehicle to a guidance signal from the guidance portion of the automatic landing system. The proposed adaptive control law in the attitude control portion adjusts the controller gains continuously online as flight conditions change, in spite of the existence of unmodeled dynamics. The number of the controller gains to be adjusted is decreased to 1/2 from the previous studies. Computer simulation involving six-degree-of-freedom (DOF) nonlinear flight dynamics is performed to examine the effectiveness of the proposed adaptive control law. In order to verify the influence of the dispersion of the initial conditions, the Monte Carlo simulation is also applied. The initial conditions are more widely dispersed than the previous studies. As a result, except under the unsuitable initial conditions, the ALFLEX successfully landed on the runway.

  • PDF

The Application of Resettable Device to Semi-Active Tuned Mass Damper Building Systems for Multi-level Seismic Hazard Mitigation

  • Chey, Min-Ho
    • Architectural research
    • /
    • v.14 no.3
    • /
    • pp.99-108
    • /
    • 2012
  • An innovative multi-story Semi-Active Tuned Mass Damper (SATMD) building system is proposed to control seismic response of existing structures. The application of adding new stories as large tuned mass and semi-active (SA) resettable actuators as central features of the control scheme is derived. For the effective control of the structures, the optimal tuning parameters are considered for the large mass ratio, for which a previously proposed equation is used and the practical optimal stiffness is allocated to the actuator stiffness and rubber bearing stiffness. A two-degree-of freedom (2-DOF) model is adopted to verify the principal efficiency of the suggested structural control concept. The simulations for this study utilizes the three ground motions, from SAC project, having probability of exceedance of 50% in 50 years, 10% in 50 years, and 2% in 50 years for the Los Angeles region. 12-story moment resisting frames, which are modified as '12+2' and '12+4' story structures, are investigated to assess the viability and effectiveness of the system that aims to reduce the response of the buildings to earthquakes. The control ability of the SATMD scheme is compared to that of an uncontrolled and an ideal Passive Tuned Mass Damper (PTMD) building system. From the performance results of suggested '12+2' and '12+4' story retrofitting case studies, SATMD systems shows significant promise for application of structural control where extra stories might be added.

SenSation : A New Translational 2 DOF Haptic Device with Parallel Mechanism

  • Chung, Young-Hoon;Lee, Jae-Won
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.217-222
    • /
    • 2001
  • We propose a new two-degree of freedom parallel mechanism for a haptic device and will refer to the mechanism as the SenSation. The SenSation is designed in order to improve the kinematic performanced and to achieve static balance. We use the panto graph mechanisms in order to change the location of active joints, which leads to transform a direct kinematic singularity into a nonsingularity. The direct kinematic singular configurations of the SenSation occur near the workspace boundary. Using the property that position vector of rigid body rotating about a fixed point is normal to the velocity vector, Jacobian matrix is derived. Using the vector method, two different types of singularities of the SenSation can be identified and we discuss the physical significance of each of the three types of singularities. We will compare the kinematic performances(force manipulability ellipsoid, kinematic isotropy) of the SenSation with those of five-var parallel mechanism. By specifying that the potential energy be fixed, the conditions for the static balancing of the SenSation is derived. The static balancing is accomplished by changing the center of mass of the links.

  • PDF

Feed-Forward Compensation Technique in Stationary Reference Frame for the Enhanced Disturbance Rejection Performance in Parallel Operation of Double-Conversion UPSs (이중 변환 UPS의 병렬 운전 시 외란 저감 성능 향상을 위한 정지 좌표계 상의 전향 보상 기법)

  • Ryu, Hyo-Jun;Yoon, Young-Doo;Mo, Jae-Sung;Choi, Seung-Cheol;Woo, Tae-Gyeom
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.367-375
    • /
    • 2022
  • Generally, a proportional-resonant controller is used to eliminate steady-state errors during the voltage-current control of a double-conversion uninterruptible power supply (UPS) in a stationary reference frame. Additionally, the feed-forward control compensating for the load current, which can be considered a disturbance of the voltage controller, can be used to improve the disturbance rejection performance. However, during the parallel operation of UPSs, circulating current can occur between UPS modules when performing both feed-forward control and droop control because feed-forward control reduces the circulating current impedance. This study proposes a feed-forward compensation technique that considers the impedance of circulating current. An additional feed-forward compensation technique is developed to enhance the disturbance rejection performance. The validity of the proposed feed-forward compensation technique is verified by the experiment results of the parallel operation of a 500 W double-conversion UPS module.

Neural Network-Based System Identification and Controller Synthesis for an Industrial Sewing Machine

  • Kim, Il-Hwan;Stanley Fok;Kingsley Fregene;Lee, Dong-Hoon;Oh, Tae-Seok;David W. L. Wang
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.83-91
    • /
    • 2004
  • The purpose of this paper is to obtain an accurate nonlinear system model to test various control schemes for a motion control system that requires high speed, robustness and accuracy. An industrial sewing machine equipped with a Brushless DC motor is considered. It is modeled by a neural network that is configured as an output-error dynamical system. The identified model is essentially a one step ahead prediction structure in which past inputs and outputs are used to calculate the current output. Using the model, a 2 degree-of-freedom PID controller to compensate the effects of disturbance without degrading tracking performance has been de-signed. In this experiment, it is not preferable for safety reasons to tune the controller online on the actual machinery. Experimental results confirm that the model is a good approximation of sewing machine dynamics and that the proposed control methodology is effective.

Experimental Study on Condition Evaluation for Railway Ballasted Track (자갈궤도의 상태평가를 위한 실험적 연구)

  • Choi, Jung-Youl;Bahng, Eun Young
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.152-157
    • /
    • 2018
  • The degradation and damage of the components for ballasted track could be caused a serious problem for railway safety. Therefore, the integrity evaluation of ballasted track condition is important to ensure and predict that the track safety and track maintenance. Various track components such as rail pad, ballast, sleeper, and rail that are widely used in Republic of Korea and represent a range of physical properties have been selected for this research. In this study, the experimental modal analysis was performed by the non-destructive testing. Modal test results were obtained from the field test and used to assess the condition of the track components. From the field test, the system of ballasted track was found to be simplified as a two-degree-of-freedom(2DOF) dynamic system. The condition of track component was found to directly affect the dynamic response of ballasted tracks. As the results, the dynamic properties of the track component was depend on the track condition and was distributed more roughly and over a wider range than its initial design values. Further, the methodology presented in this study is possible to determine experimentally the fundamental track parameters which are required in the numerical analysis, and also are useful for the safety assessment of track condition.

The study on the 4-dof friction induced self-oscillation system with friction coefficient of velocity and pressure (속도 압력항의 마찰 기인 4 자유도계 시스템의 자려진동에 대한 연구)

  • Joe, Yong-Goo;Shin, Ki-Hong;Lee, Jung-Yun;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.255-261
    • /
    • 2002
  • A four-degree of freedom model is suggested to understand the basic dynamical behaviors of the normal interaction between two masses of the friction induced normal vibration system. The two masses may be considered as the pad and the disk of the brake. The phase space analysis is performed to understand complicated in-plane dynamics of the non-linear model. Attractors in the phase space are examined for various conditions of the parameters. In certain conditions, the attractor becomes a limit cycle showing the stick-slip phenomena. In this paper, on the basis of the in-plane motion not only the existence of the limit cycle but also the size of the limit cycle is examined o demonstrate the non-linear dynamics that leads the unstable state and then the normal vibration is investigated as the state of the in-plane motion For only one case of the system frequency(two masses with same natural frequencies), the propensity of the normal vibration is discussed in detail. The results show an important fact that it may be not effective when too much damping is present in the only one part of the masses.

  • PDF

The effects of damping on the limit cycle of a 2-dof friction induced self-oscillation system (마찰 기인 2 자유도계 시스템의 자려진동에 대한 댐핑의 영향)

  • 조용구;신기흥;오재웅
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.89-96
    • /
    • 2002
  • A two-degree of freedom model is suggested to understand the basic dynamical behaviors of the interaction between two masses of the friction induced vibration system. The two masses may be considered as the pad and the disk of the brake, The phase space analysis is performed to understand complicated dynamics of the non-linear model. Attractors in the phase space are examined for various conditions of the parameters of the model especially by emphasizing on the damping parameters. In certain conditions, the attractor becomes a limit cycle showing the stick-slip phenomena. In this paper, not only the existence of the limit cycle but also the size of the limit cycle is examined to demonstrate the non-linear dynamics that leads the unstable state. For the two different cases of the system frequency ((1)two masses with same natural frequencies, (2) with different natural frequencies), the propensity of limit cycle is discussed in detail. The results show an important fact that it may make the system worse when too much damping is present in the only one part of the masses.

  • PDF

Trajectory tracking control of underactuated USV based on modified backstepping approach

  • Dong, Zaopeng;Wan, Lei;Li, Yueming;Liu, Tao;Zhang, Guocheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.817-832
    • /
    • 2015
  • This paper presents a state feedback based backstepping control algorithm to address the trajectory tracking problem of an underactuated Unmanned Surface Vessel (USV) in the horizontal plane. A nonlinear three Degree of Freedom (DOF) underactuated dynamic model for USV is considered, and trajectory tracking controller that can track both curve trajectory and straight line trajectory with high accuracy is designed as the well known Persistent Exciting (PE) conditions of yaw velocity is completely relaxed in our study. The proposed controller has further been enriched by incorporating an integral action additionally for enhancing the steady state performance and control precision of the USV trajectory tracking control system. Global stability of the overall system is proved by Lyapunov theory and Barbalat's Lemma, and then simulation experiments are carried out to demonstrate the effectiveness of the controller designed.

Design of e-compass with terrestrial magnetic compensation for a ship (선박용 지자기 보정 기능을 갖는 이동식 전자컴퍼스 개발)

  • Hong, Chang-Hyun;Kim, Yung-Chul;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.381-382
    • /
    • 2007
  • Recently fishing industry is interested in efficient and automated fishing implementations to reach the level of the international leading technology. One of the important device used in fishing boat is an automated electric compass that harnesses the GPS and terrestrial magnetic sensor. The electric compass is desired to be minimized in size while keeping a high effectiveness in the characteristic of a magnetic compass. This device also can be used as a heading angle sensor to construct auto-navigation system in a small size of ships. However, there exists measurement errors induced from the slope of terrestrial magnetic sensor caused by the motion of boat. In this paper, a method has been proposed removing the measurement error arising from the slope of terrestrial magnetic sensor when the ship is in motion. We have designed a sensor with two DOF(degree of freedom) and a weight to maintain the horizontality of the sensor. Through this research, the hardware has been designed and also a test has been performed. The test shows a promissory result.

  • PDF