• Title/Summary/Keyword: degree of slope

Search Result 474, Processing Time 0.034 seconds

Forest Community Structure of Mt. Bukhan Area (북한산 지역의 삼림군집구조에 관한 연구)

  • 박인협;이경재;조재창
    • Korean Journal of Environment and Ecology
    • /
    • v.1 no.1
    • /
    • pp.1-23
    • /
    • 1987
  • To investigate the forest structure of Mt. Bukhan. ranging from Seoul to Kyongkido, twenty plots were set up by the vegetation physiognomy and vegetation analysis was carried out. According to the leading dominant tree species in canopy stratum, forest communities were classified into three large groups of natural forest communities, semi-natural forest communities and artificial forest communities, and each of them covered 82.64, 7.03, and 5.71% of Mt. Bukhan area, respectively. Pure or mixed natural forest communities of Pinus densiflora and Quercus mongolica were major forest communities and covered 70.8% of Mt. Bukhan area. The important planted tree species were Robinia pseudoacacia, Pinus rigida, and Alnus birsuta and they were mainly planted at the southern slope and roadside. The degree of human disturbance of vegetation of 8, 7, and 6 area covered 82.64, 0, and 12.74%, respectively. According to forest dimensions, most of forest communities were young aged forests of which mean DBH was 20cm and canopy height below 10m. However, a few mature forest communities of Pinus densiflora or Quercus mongolica were found in the small area. The range of Shannon's species diversity of major natural forest communities, pure or mixed forest communities of Pinus densiflora and Quercus mongolica was 1.085~1.242. According to stand dynamic analysis by DBH class distribution, the present Quercus mongolica communities arid Robinia pseudoacacia communities may last long their present forest structure and most of other communities may be succeeded to Quercus mongolica communities, however, a few communities invaded by Robinia pseudoacacia and Quercus aliena-Quercus acutissima communities may be succeeded to Robinia pseudoacacia communities and Quercus aliena communities, respectively. DCA was the most effective method of this study. DCA ordination were showed that successional trends of tree species seem to be from Pinus densiflora through Quercus serrata. Prunus sargrntii. Sorbus alnifolia to Q. mongolica. Fraxinus mandsburica, F. rhynchophylla in the upper layer and from Zanthoxylum schinifolium, Lespedeza crytobotrya trough Rhus trichocarpa. Rh. verniciflua. Rhododendron mucronulatum. Rh. schlippenbachii to Acer pseudo-sieboldianus. Magnolia sieboldii, Euonymus sieboldianus.

  • PDF

Estimation Model for Simplification and Validation of Soil Water Characteristics Curve on Volcanic Ash Soil in Subtropical Area in Korea (난지권 화산회토양의 토색별 토양수분 특성곡선 및 단일화 추정모형)

  • Hur, Seung-Oh;Moon, Kyung-Hwan;Jung, Kang-Ho;Ha, Sang-Keun;Song, Kwan-Cheol;Lim, Han-Cheol;Kim, Geong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.329-333
    • /
    • 2006
  • Most of volcanic ash soils in South Korea are distributed in Jeju province which is an island placed on southern part of Korea and has steep slope mountain area. There are many soils containing high contents of organic matter (OM) derived from volcanic ash in Jejudo, also. Therefore, irrigation and drainage in volcanic ash soil different with general soil which has low OM content have to be applied with another management way, but studies searching appropriate methods for them are set on insufficient situation because the area of volcanic ash soil in South Korea is only 1.3% (130,000ha). This study was conducted for analysis of soil water content and irrigation quantity appropriate for crops cultivated in volcanic ash soil with high OM content. Although soils with different soil color have the same soil texture, soil water characteristics curve by soil color showed the difference of water retention capability by OM content. But, this characteristics classified with soil color could be unified by scaling technique with similitude analysis method which get dimensionless water content using a present water content, a residual water content and saturated water content (or water content at 10kPa). A relation of gravimetric soil water content (GSWC) and dimensionless water content by the results showed a form of power function. The dimensionless water content (DWC) express a relative saturation degree of present water content. This was also expressed by van Genuchten model which describe the relation between relative saturation degrees and matric potentials. These results on soil water characteristics curve (SWCC) of volcanic ash soil will be the basic of irrigation plan in area having high organic contents into soil.

Ecological Characteristics of Fraxinus chiisanensis Nakai, an Endemic Plant of Korea (한국 특산식물 물들메나무의 생태적 특성)

  • Jeong-Seok Park;Shin-Young Kwon;Ju-hee Lee;Ji-Eun Byun;So-dam Kim;Seok-Min Yun;Ji-Young Jung
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.4
    • /
    • pp.375-387
    • /
    • 2024
  • This study investigated the ecological characteristics of Fraxinus chiisanensis Nakai, one of the endemic and rare plant species in Korea, based on its distribution status, characteristics of the growth environment, and species composition. A vegetation survey that analyzed the correlation between species distribution patterns and environmental variables, along with the traits of the emergent plant species, was performed according to the explanation of environmental growth conditions and phytosociological method for the location where F. chiisanensis is found. A total of 19 dominant locations and 9 non-dominant locations of F. chiisanensis were observed in 28 study sites in 12 regions, and a total of 155 taxa were observed. According to the vegetation climate of Korea, the growth environment of the study site where F. chiisanensis is located is characterized as cold and is primarily situated within the northern temperate deciduous broadleaf forest zone. The average elevation was 859m above sea level, with an average rock exposure of 60.4%, soil exposure of 24.7%, and an average slope of 18.7°. The taxa belonging to the top P-NCD(Percentage of Net Contribution Degree) among the emergent species were mostly designated as the taxa emerging in valley vegetation. The correlation analysis of environmental variables revealed that altitude had the strongest correlation, with rock exposure showing the second highest correlation. The ongoing dynamics of the F. chiisanensis forest are anticipated to persist due to the high P-NCD values exhibited by the F. chiisanensis within the shrub and herbaceous layers among the taxa associated with tree species. Most F. chiisanensis habitats are currently situated within protected regions such as national parks, provincial parks, and county parks, where there are relatively minimal human-induced disturbances. However, there is potential for damage in areas not designated as protected, such as forest tending operation sites or new hiking trails. Concerns about declining habitat quality have prompted suggestions for management strategies such as establishing Forest Genetic Resource Reserves in these locations. In addition, follow-up and further research should be conducted to identify possible sites for distribution and establish candidate conservation areas based on various environmental conditions of F. chiisanensis.

Soil Loss and Pollutant Load Estimation in Sacheon River Watershed using a Geographic Information System (GIS를 이용한 동해안 하천유역의 토양유실량과 오염부하량 평가 -사천천을 중심으로-)

  • Cho, Jae-Heon;Yeon, Je-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1331-1343
    • /
    • 2000
  • Through the integration of USLE and GIS, the methodology to estimate the soil loss was developed, and applicated to the Sacheon river in Gangrung. Using GIS, spatial analysis such as watershed boundary determination, flow routing. slope steepness calculation was done. Spatial information from the GIS application was given for each grid. With soil and land use map, information about soil classification and land use was given for each grid too. Based upon these data, thematic maps about the factors of USLE were made. We estimated the soil loss by overlaying the thematic maps. In this manner, we can assess the degree of soil loss for each grid using GIS. Annual average soil loss of Sacheon river watershed is 1.36 ton/ha/yr. Soil loss in forest, dry field, and paddy field is 0.15 ton/ha/yr, 27.04 ton/ha/yr, 0.78 ton/ha/yr respectively. The area of dry field, which is 4% of total area, is $2.4km^2$. But total soil loss of dry field is 6561 ton/yr, and it occupies 84.9 % of total soil loss eroded in Sacheon river watershed. Comparing with the 11.2 ton/ha/yr of an average soil loss tolerance for cropland, provision for the soil loss in dry field is necessary. Run-off and water quality of Sacheon river were measured two times in flood season: from July 24, 1998 to July 28 and from September 29 to October 1. As the run-off of the river increased, SS, TN, TP concentrations and pollutant loadings increased. SS, TN, TP loads of Sacheon river discharged during the 2 heavy rains were 21%, 39%, and 19% of the total pollutant loadings generated in the Sacheon river watershed for one year. We can see that much pollutants are discharged in short period of flood season.

  • PDF

Effect of the Landscape Crop, Chrysanthemum zawadskii on Reducing Soil Loss in Highland Sloping Area (경관작물 구절초의 고랭지 경사지 밭 토양유실 경감 효과)

  • Kim, Su Jeong;Sohn, Hwang Bae;Hong, Su Young;Kim, Tae Young;Lee, Jung Tae;Nam, Jung Hwan;Chang, Dong Chil;Suh, Jong Taek;Kim, Yul Ho
    • Korean Journal of Plant Resources
    • /
    • v.33 no.1
    • /
    • pp.15-23
    • /
    • 2020
  • There is high vulnerability of soil loss in sloping and highland used for agricultural production due to the low surface covering in summer rainy season. This study evaluated the surface-covering rate of landscape crop in reducing soil loss in the highland. The experiment was conducted in a 55% sloped lysimeter with three treatments of planting density using Korean native chrysanthemum, and investigated the soil coverage rate, run-off water, and soil erosion. The three treatments according to the degree of soil covering are bare soil as the control treatment TC, coverage rate of 43-59% for treatment T1, and, coverage rate of 63-81% for treatment T1, and T2. During the cultivation period, the average reduction of run-off water was 71% for treatment T1 and 76% for treatment T2, which are better, compared with the control. The reduction in eroded soil was 84% in treatment T1 and 98% for treatment T2, which is also better than the control treatment. Therefore, it is possible to alleviate the soil loss in sloping lands by planting chrysanthemum, which is superior among the perennial plant species and considered as a crop with economic value.

Floristic study and conservation management strategies of algific talus slopes on the Korean peninsula (한반도 풍혈지의 관속식물상과 보전관리 방안)

  • Kim, Jin-Seok;Chung, Jae-Min;Kim, Jung-Hyun;Lee, Woong;Lee, Byoung-Yoon;Pak, Jae-Hong
    • Korean Journal of Plant Taxonomy
    • /
    • v.46 no.2
    • /
    • pp.213-246
    • /
    • 2016
  • Algific talus slopes tend to occur on steep north-facing slopes with bedrock that retains ice and emits cold air throughout the growing season. Algific talus slopes provide a suitable microclimate for disjunct or relict populations of northern plant species at low altitude habitats in temperate zones. The purpose of this study is to suggest a strategy for the comprehensive conservation of the vegetation of algific talus slopes through studies of the floristics and plant species compositions and threat factors at present and in the future of 15 major algific talus slopes in Korea. As a result, the vascular plants surveyed on 15 major algific talus slopes were recorded, with a total of 587 taxa, 109 families, 323 genera, 531 species, 7 subspecies, 47 varieties 1 form and 1 hybrid. Of them, endemic plants numbered 26 taxa, and threatened species according to the IUCN valuation basis numbered 8 taxa. Fourth (IV) and fifth (V) degree indicator species as specified by floristic subregions numbered 31 taxa. Peculiarly, several subalpine-native plant species, in this case Cystopteris fragilis, Gymnocarpium dryopteris, Huperzia selago, Rosa koreana, Vaccinium vitis-idaea and Woodsia hancockii, were distributed on algific talus slopes at 100-600 m above sea level. Numerous and diverse biological resources native to algific talus slopes in Korea have been consistently disturbed or damaged by human activities without some form of protection. An all-taxa biodiversity inventory should be surveyed to provide more information about all biological species living on algific talus slopes. In addition, conservation strategies to ensure biodiversity and effective management of algific talus slopes are discussed in detail.

Study on the Interpretation of the Features Affacting to the N-supplying Capability of Field Soils to Corn in Pennsylvania (Pennsylvania주 옥수수재배지(栽培地) 토양(土壤)의 질소공급능력(窒素供給能力)에 영향(影響)을 미치는 요인분석(要因分析))

  • Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.1
    • /
    • pp.26-37
    • /
    • 1992
  • Fifty-five field experiments were conducted in order to find out some useful indices for the prediction of N-supplying capability(NSC) of soils under cultivation of corn in Pennsylvania over 3 years from 1986. Contents of $NO_3-N$, absorbance at 200 nm of the extract from soil with 0.01M $NaHCO_3$ were identified to be used as indices before planting. Methods for the estimation of organic nitrogen available later in the growing season(KCLA-N, PBBA-N, UV260 nm absorbance of $NaHCO_3$ extract) were not to be used as good indices individually, but when those are combined together with inorganic $NO_3-N$ showed a highly significant correlationship with the NSC. The year of an even distribution of rainfall, 1987, gave the highest significant correlationship between NSC and the indices. For soils of the same texture with slightly different physical properties, combined indices obtained from physico-chemical factors improved the degree of predictability when the grades of soil slope, depth of Ap were considered at the same time. More futher researches such as this need to be done before any conclusive result can be drawn.

  • PDF

Relationship between Steady Flow and Dynamic Rheological Properties for Viscoelastic Polymer Solutions - Examination of the Cox-Merz Rule Using a Nonlinear Strain Measure - (점탄성 고분자 용액의 정상유동특성과 동적 유변학적 성질의 상관관계 -비선헝 스트레인 척도를 사용한 Cox-Merz 법칙의 검증-)

  • 송기원;김대성;장갑식
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.234-246
    • /
    • 1998
  • The objective of this study is to investigate the correlation between steady shear flow (nonlinear behavior) and dynamic viscoelastic (linear behavior) properties for concentrated polymer solutions. Using both an Advanced Rheometic Expansion System(ARES) and a Rheometics Fluids Spectrometer (RFS II), the steady shear flow viscosity and the dynamic viscoelastic properties of concentrated poly(ethylene oxide)(PEO), polyisobutylene(PIB), and polyacrylamide(PAAm) solutions have been measured over a wide range of shear rates and angular frequencies. The validity of some previously proposed relationships was compared with experimentally measured data. In addition, the effect of solution concentration on the applicability of the Cox-Merz rule was examined by comparing the steady flow viscosity and the magnitude of the complex viscosity Finally, the applicability of the Cox-Merz rule was theoretically discussed by introducing a nonlinear strain measure. Main results obtained from this study can be summarized as follows : (1) Among the previously proposed relationships dealt with in this study, the Cox-Merz rule implying the equivalence between the steady flow viscosity and the magnitude of the complex viscosity has the best validity. (2) For polymer solutions with relatively lower concentration, the steady flow viscosity is higher than the complex viscosity. However, such a relation between the two viscosities is reversed for highly concentrated polymer solutions. (3) A nonlinear strain measure is decreased with increasing stran magnitude, after reaching the maximum value in small strain range. This behavior is different from the theoretical prediction demonstrating the shape of a damped oscillatory function. (4) The applicability of the Cox-Merz rule is influenced by the $\beta$ value, which indicates the slope of a nonlinear stain measure (namely, the degree of nonlinearity) at large shear deformations. The Cox-Merz rule shows better applicability as the $\beta$ value becomes smaller.

  • PDF

Comparison of Domestic and Foreign Design Standards for Overall Stability of Soil Nailed Slopes (쏘일네일 보강 비탈면의 전체 안정성에 대한 국내외 설계기준 비교)

  • Kim, Tae-Won;You, Kwang-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.6
    • /
    • pp.5-13
    • /
    • 2019
  • The international trend in soil nailed wall design has been evolved from the allowable stress design to limit state design and it is still currently ongoing. The design guidelines in Korea and Hong Kong still adopts the allowable stress design philosophy while those in others mostly do the limit state design. In this study, four soil nail design methods presented in the major design guidelines (U.S. FHWA GEC 7 (2015), Clouterre in France (1991), Soil nailing - best practice guidance in U.K. (CIRIA, 2005), Geoguide 7 in Hong Kong (2008) and Design standard for slope reinforcement work in Korea (KDS 11 70 15 f: 2016)) are described and analyzed in brief. The factor of safety and CDR (Capacity-to-Demand Ratio) which is used to measure the degree of conservatism of a design guide are obtained for the two cases. One is the design example presented in CIRIA (2005) and the other is in-situ loading test performed on the top of backfill of the soil nail wall to investigate the conservatism of design guidelines. It is revealed that the design method in overall stability of soil nail walls in domestic design method (CDR=0.78) is the most conservative and those by Clouterre (CDR=0.99, 1.09), Geoguide 7 (CDR=1.13, 0.97), U.S. FHWA (CDR=1.09, 1.07) and CIRIA (CDR=1.40, 1.16) in order from the second most conservative to the least conservative for the design example presented in CIRIA. For the in-situ loading test performed on the top of backfill of the soil nail wall, the order of conservatism is identical except that the places of Geoguide 7 (CDR=0.66, 0.72) and FHWA (CDR=0.73, 0.72) are changed. However, the results obtained among U.S. FHWA (2015) and Clouterre (1991) and Geoguide 7 (2008) are not so different.

The Topographical Factors Affecting the Water Quality of Iwonchon Basin (이원천 유역의 하천수질에 미치는 지형요인)

  • 이호준;방제용
    • The Korean Journal of Ecology
    • /
    • v.22 no.3
    • /
    • pp.101-108
    • /
    • 1999
  • This survey was performed from March 1993 to March 1998, in order to clarify the relationships between water quality and topographical factor. The study sites were two reservoir basins; Kaesim and Jangchan in Iwon-myon, Okchon-gun, Chungcho'ngbukdo Province. Basin shape factors of Kaesim reservoir were at 0.030∼0.210 (mean value 0.090), those of Jangchan reservoir were at 0.217∼0.452 (mean value 0.325). The mean basin shape factor of Jangchan reservoir was 3.61 times larger than that of Kaesim reservoir because its stream width was narrower and mean stream length was shorter. In the correlation between distance from the source of stream (L) and basin area (A), Iwonchon basin was calculated as L=1.44A/sup 0.6/. Circularity ratio was 17.114 in Kaesim (22% of Kum River), and 7.444 in Jangchan. Elongation ratio was 0.357 in Kaesim, 0.636 in Jangchan and 0.282 in Kum River. Precipitation summation period of Jangchan was 1.54 times slower than that of Kaesim. Rainfall reaching time in each small basin was 337.53 min. in A'(Jangchan-ri) basin of Jangchan and 49.26 min in H (Iwon-ri) basin of Kaesim. In the relationship between watershed frequency (Df) and drainage density (Dd), the regression equation was Df=0.023Dd² in Kaesim and Df=0.189Dd² in Jangchan reservoir. As slope degree increased, DO became higher (Y/sub DO/=0.19X+6.5927, r=0.8l), but COD(Y/sub COD/=-0.2092X+9.7104, r=0.52) became lower. Total nitrogen was increased with the increase of basin shape factor and circularity ratio. Ratio of B/sub OD/ to COD was 1/1.2(Y/sub BOD/ = 1.2984 X/sub COD/-3.2004, r=0.9l).

  • PDF