• Title/Summary/Keyword: degree of restraint

Search Result 57, Processing Time 0.028 seconds

A Study on the Shrinkage Cracking Properties of Concrete by Using Blast Furnace Slag Cement and Frost-Resistant Accelerator (고로슬래그시멘트 및 내한촉진제를 사용한 콘크리트의 수축균열특성에 관한 연구)

  • Choi, Hyeong-Gil;Choi, Hee-Sup
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • As a cold-weather-concrete construction technique for enhancing the sustainability and improving efficiency of cold-weather construction, the cracking timing, the starting point of deterioration for concrete, due to the shrinkage of the blast furnace slag cement concrete including accelerator was evaluated. As a result, by using blast furnace slag and accelerator, the cracking was developed faster with higher cracking potential under the restrained conditions at constant age and free-shrinkage strain. It can be considered that the results of decreased stress relaxation by creep or increased restraint with increased free-shrinkage strain causes the increased cracking development speed. Hence, it should be considered the necessary of cracking due to the shrinkage when blast furnace slag or accelerator was used for cold-weather construction.

Red Ginseng Supplementation More Effectively Alleviates Psychological than Physical Fatigue

  • Choi, Ji-Young;Woo, Tae-Sun;Yoon, Seo-Young;Dela Pena, Ike Campomayor;Choi, Yoon-Jung;Ahn, Hyung-Seok;Lee, Yong-Soo;Yu, Gu-Yong;Cheong, Jae-Hoon
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.331-338
    • /
    • 2011
  • Red ginseng (RG, the extract of Panax ginseng Meyer) has various biological and psychological activities and may also alleviate fatigue-related disorders. The present study was undertaken to evaluate what kind of fatigue red ginseng alleviate. Animals were orally administered with 50, 100, 200, 400 mg/kg of RG for 7 days. Before experiments were performed. Physiological stress (swimming, rotarod, and wire test) are behavioral parameters used to represent physical fatigue. Restraint stress and electric field test to a certain degree, induce psychological fatigue in animals. Plasma concentration of lactate and corticosterone (CORT) were also measured after these behavioral assays. RG supplementation (100 mg/kg) increased movement duration and rearing frequency of restrainted mice in comparison with control. 100 and 200 mg/kg of RG increased swimming time in cold water ($8{\pm}4^{\circ}C$) while at 100 mg/kg, RG increased electric field crossing over frequencies. 50, 100 and 200 mg/kg RG prolonged running time on the rotarod and at 100 mg/kg, it increased balancing time on the wire. RG at those doses also reduced falling frequencies. RG supplementation decreased plasma CORT levels, which was increased by stress. Lactate levels were not significantly altered. These results suggest that RG supplementation can alleviate more the damages induced by psychological than physical fatigue.

A Study on the Evaluation of Transverse Residual Stress at the Multi-pass FCA Butt Weldment using FEA (유한요소해석을 이용한 다층 FCA 맞대기 용접부의 횡 방향 잔류응력 평가에 관한 연구)

  • Shin, Sang-Beom;Lee, Dong-Ju;Park, Dong-Hwan
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.26-32
    • /
    • 2010
  • The purpose of this study is to evaluate the residual stresses at the multi-pass FCA weldment using the finite element analysis (FEA). In order to do it, an H-type specimen was selected as a test specimen. The variable used was in-plane restraint intensity. The temperature distribution at the multi-pass FCA butt weldment was evaluated in accordance with the relevant guidance recommended by the KWJS. The effective conductivity for the weld metal corresponding to each welding pass was introduced to control the maximum temperature below the vaporization temperature of weld metal. The heat flux caused by welding arc was assumed to be applied to the weld metal corresponding to welding pass. With heat transfer analysis results, the distribution of transverse residual stresses was evaluated using the thermo-mechanical analysis and compared with the measured results by XRD and uniaxial strain gage. In thermo-mechanical analysis, the plastic strain resetting at the temperature above melting temperature of $1450^{\circ}C$ was considered and the weld metal and base metal was assumed to be bilinear kinematics hardening continuum. According to the comparison between FEA and experiment, transverse residual stresses at the multi-pass FCA butt weldment obtained by FEA had a good agreement with the measured results, regardless of in-plane rigidity. Based on the results, it was concluded that thermo-mechanical FE analysis based on temperature distribution calculated in accordance with the KWJS’s guidance could be used as a tool to predict the distribution of residual stress of the multi-pass FCA butt weldment.

Prediction of Welding Deformation of Ship Hull Blocks

  • C. D. Jang;Lee, C. H.
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.4
    • /
    • pp.41-49
    • /
    • 2003
  • Welding deformation reduces the accuracy of ship hull blocks and decreases productivity due to the need for correction work. Preparing an error-minimizing guide at the design stage will lead to higher quality as well as higher productivity. Therefore, developing a precise method to predict the weld deformation is an essential part of it. This paper proposes an efficient method for predicting the weld deformation of complicated structures based on the inherent strain theory combined with the finite element method. A simulation of a stiffened panel confirmed the applicability of this method to simple ship hull blocks.

Early Age Shrinkage by Self-Desiccation in Ultra-High-Strength Concrete

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.469-470
    • /
    • 2010
  • The high-strength concrete(HSC) compared to normal concrete represents higher autogenous shrinkage due to lower water-to-binder ratio(W/B) and supplementaries, fly ash(FA) and granulated blast-furnace slag(BFS), etc. The potential of early age cracking which reduces durability of concrete structures is normally influenced by autogenous shrinkage and degree of restraint. Therefore, this paper studies on the evaluation of the characteristics of autogenous shrinkage for HSC, ultra-high-strength concrete(UHSC) containing admixtures by experimental test and the test results are compared with existed prediction models.

  • PDF

A Simulation Model of the ACL Function Using MADYMO (마디모를 이용한 전방십자인대 기능 시뮬레이션 모델)

  • Park, Jung-Hong;Son, Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1408-1416
    • /
    • 2006
  • A mathematical knee model was constructed using MADYMO. The purpose of this study is to present a more realistic model of the human knee to reproduce human knee motion. Knee ligaments were modeled as line elements and the surrounding muscles were considered as passive restraint elements. A calf-free-drop test was performed to validate the suggested model. A calf was dropped from the rest at about 65 degree flexed posture in the prone position. The motion data were recorded using four video cameras and then three dimensional data were acquired by Kwon3D motion analysis software. The results showed that general shapes of angular quantities were similar in both the experiment and computer simulation. Functional stability of the anterior cruciate ligament was explicitly revealed through this model.

Calculation of residual stresses by inherent strain method (고유 변형도법에 의한 잔류응력의 계산)

  • 장창두;서승일
    • Journal of Welding and Joining
    • /
    • v.7 no.1
    • /
    • pp.36-41
    • /
    • 1989
  • Among various calculation methods for residual stresses, inherent strain method can be useful one for its simplicity. In comparison with finite element method, it is more economical and efficient. First, inherent strain is assumed, and then incompatibility can be calculated from this inherent strain. Based on collocation method, incompatibility equation is solved assuming stress functions which satisfies boundary conditions. Assumed inherent strain can be determined through iterations on the condition that longitudinal residual stress in centerline is yield stress and transverse distortion is the same as predicted one from other method. Calculated results according to this analytic method yield good agreement with experimental ones.

  • PDF

Characteristics of Early-Age Restrained Shrinkage and Tensile Creep of Ultra-High Performance Cementitious Composites (UHPCC) (초고성능 시멘트 복합체의 초기 재령 구속 수축 및 인장 크리프 특성)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.581-590
    • /
    • 2011
  • Since ultra-high performance cementitious composites (UHPCC) not only represents high early age shrinkage strain due to its low water-to-binder ratio (W/B) and high fineness admixture usage but also reduces the cross section of structure from the higher mechanical properties, it generally has more shrinkage cracks from the restraints of formwork and reinforcing bars. In this study, free and restrained shrinkage experiments were conducted to evaluate the suitability of incorporating both expansive admixture (EA) and shrinkage reducing agent (SRA). The test results indi-cated that approximately 40~44% of free shrinkage strain was decreased. Also, the results showed that 35% and 47% of residual tensile stresses were relieved by synergetic effect of SRA and EA, respectively. Residual tensile stresses from ringtest were relaxed by approximately 61% and 64% of elastic shrinkage stresses due to SRA and EA, respectively, because of the tensile creep effect. Therefore, the creep effect should be considered to precisely estimate the restrained shrinkage behavior of concrete structures. The degree of restraint of UHPCC was approximately in the range of 0.78~0.85. The addition of combined EA and SRA showed minute influence on the degree of restraint. However, the effect decreased when thicker concrete ring was used. Tensile creep strains were measured and compared to the predicted values from 4-parametric prediction model considering time dependent restrained forces.

Evaluation of Shrinkage Cracking Characteristics and Degree of Restraint for Ultra-High-Strength Concrete (초고강도 콘크리트의 수축 균열 특성 및 구속도 평가)

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.641-650
    • /
    • 2010
  • The concrete cracking from the restrained stress caused by the shrinkage may play significant cause of deterioration of concrete structures by allowing the permeation of sulphate and chloride ions which in turn triggers corrosion of steel reinforcement. In particular, the cracking becomes more critical as water binder ratio (W/B) is reduced and concrete strength increases. Therefore, it needs to evaluate correctly the comprehensive shrinkage behavior of concrete with high strength: high-strength concrete (HSC), ultra-highstrength concrete (UHSC). The unrestrained shrinkage tests, however, cannot estimate the net shrinkage effectively which affects cracking after full development of strength and stiffness because it does not consider the degree of restraint, strength development, stress relaxation, and so on. Therefore, in this study, both free and restrained shrinkage tests with variables of W/B (W/B of 30, 25 and 16%) and admixtures (fly ash (FA) and granulated blast-furnace slag (BFS)) for HSC, very-high-strength concrete (VHSC) and UHSC were performed. The test results indicated that the autogenous shrinkage and total shrinkage at drying condition were reduced as W/B increased and FA, BFS were added, and the cracking behavior was suppressed as W/B increased and FA was added.

Predictors of Delirium in Patients after Orthopedic Surgery (정형외과 수술 후 섬망 발생요인 분석)

  • Chung, Mee Hye;Yun, Sun Ok;Park, Jeong Hee;Chu, Soon Ok;Oh, So Young;Kim, Mi Young
    • Journal of Korean Clinical Nursing Research
    • /
    • v.17 no.3
    • /
    • pp.443-454
    • /
    • 2011
  • Purpose: The purpose of this study was to investigate the predictors of delirium in patients after orthopedic surgery. Methods: Participants were 121 orthopedic surgery patients from one university affiliated hospital located in Seoul. The instrument of Delirium Observation Screening Scale (DOS) developed by Schuurmans et al. (2003) was utilized. Data were collected from September 1st, 2010 to March 31st, 2011 and analyzed using SPSS 12.0 with descriptive statistics, t-test, chi-square test and logistic regression. Results: The delirium in patients after orthopedic surgery was occurred in 9 (7.4%) out of 121 patients. Several factors were associated with the delirium occurrence age, admission route, preadmission Activity of Daily Living (ADL), preadmission hearing aid use, preadmission walking degree, diagnosis, type of surgery, Intensive Care Unit (ICU) stay after surgery, restraint, drainage tube, time of admission to surgery, preoperative albumin and preoperative sodium. Preadmission ADL, preoperative sodium and time of admission to surgery were the significant predictors of the delirium occurrence. Conclusion: Study results may help nurses predicting and detecting delirium early and providing preventive measures to the patients with high risk of delirium after orthopedic surgery.