• Title/Summary/Keyword: degree of interference

Search Result 212, Processing Time 0.019 seconds

APPLICATION OF FUZZY SET THEORY IN SAFEGUARDS

  • Fattah, A.;Nishiwaki, Y.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1051-1054
    • /
    • 1993
  • The International Atomic Energy Agency's Statute in Article III.A.5 allows it“to establish and administer safeguards designed to ensure that special fissionable and other materials, services, equipment, facilities and information made available by the Agency or at its request or under its supervision or control are not used in such a way as to further any military purpose; and to apply safeguards, at the request of the parties, to any bilateral or multilateral arrangement, or at the request of a State, to any of that State's activities in the field of atomic energy”. Safeguards are essentially a technical means of verifying the fulfilment of political obligations undertaken by States and given a legal force in international agreements relating to the peaceful uses of nuclear energy. The main political objectives are: to assure the international community that States are complying with their non-proliferation and other peaceful undertakings; and to deter (a) the diversion of afeguarded nuclear materials to the production of nuclear explosives or for military purposes and (b) the misuse of safeguarded facilities with the aim of producing unsafeguarded nuclear material. It is clear that no international safeguards system can physically prevent diversion. The IAEA safeguards system is basically a verification measure designed to provide assurance in those cases in which diversion has not occurred. Verification is accomplished by two basic means: material accountancy and containment and surveillance measures. Nuclear material accountancy is the fundamental IAEA safeguards mechanism, while containment and surveillance serve as important complementary measures. Material accountancy refers to a collection of measurements and other determinations which enable the State and the Agency to maintain a current picture of the location and movement of nuclear material into and out of material balance areas, i. e. areas where all material entering or leaving is measurab e. A containment measure is one that is designed by taking advantage of structural characteristics, such as containers, tanks or pipes, etc. To establish the physical integrity of an area or item by preventing the undetected movement of nuclear material or equipment. Such measures involve the application of tamper-indicating or surveillance devices. Surveillance refers to both human and instrumental observation aimed at indicating the movement of nuclear material. The verification process consists of three over-lapping elements: (a) Provision by the State of information such as - design information describing nuclear installations; - accounting reports listing nuclear material inventories, receipts and shipments; - documents amplifying and clarifying reports, as applicable; - notification of international transfers of nuclear material. (b) Collection by the IAEA of information through inspection activities such as - verification of design information - examination of records and repo ts - measurement of nuclear material - examination of containment and surveillance measures - follow-up activities in case of unusual findings. (c) Evaluation of the information provided by the State and of that collected by inspectors to determine the completeness, accuracy and validity of the information provided by the State and to resolve any anomalies and discrepancies. To design an effective verification system, one must identify possible ways and means by which nuclear material could be diverted from peaceful uses, including means to conceal such diversions. These theoretical ways and means, which have become known as diversion strategies, are used as one of the basic inputs for the development of safeguards procedures, equipment and instrumentation. For analysis of implementation strategy purposes, it is assumed that non-compliance cannot be excluded a priori and that consequently there is a low but non-zero probability that a diversion could be attempted in all safeguards ituations. An important element of diversion strategies is the identification of various possible diversion paths; the amount, type and location of nuclear material involved, the physical route and conversion of the material that may take place, rate of removal and concealment methods, as appropriate. With regard to the physical route and conversion of nuclear material the following main categories may be considered: - unreported removal of nuclear material from an installation or during transit - unreported introduction of nuclear material into an installation - unreported transfer of nuclear material from one material balance area to another - unreported production of nuclear material, e. g. enrichment of uranium or production of plutonium - undeclared uses of the material within the installation. With respect to the amount of nuclear material that might be diverted in a given time (the diversion rate), the continuum between the following two limiting cases is cons dered: - one significant quantity or more in a short time, often known as abrupt diversion; and - one significant quantity or more per year, for example, by accumulation of smaller amounts each time to add up to a significant quantity over a period of one year, often called protracted diversion. Concealment methods may include: - restriction of access of inspectors - falsification of records, reports and other material balance areas - replacement of nuclear material, e. g. use of dummy objects - falsification of measurements or of their evaluation - interference with IAEA installed equipment.As a result of diversion and its concealment or other actions, anomalies will occur. All reasonable diversion routes, scenarios/strategies and concealment methods have to be taken into account in designing safeguards implementation strategies so as to provide sufficient opportunities for the IAEA to observe such anomalies. The safeguards approach for each facility will make a different use of these procedures, equipment and instrumentation according to the various diversion strategies which could be applicable to that facility and according to the detection and inspection goals which are applied. Postulated pathways sets of scenarios comprise those elements of diversion strategies which might be carried out at a facility or across a State's fuel cycle with declared or undeclared activities. All such factors, however, contain a degree of fuzziness that need a human judgment to make the ultimate conclusion that all material is being used for peaceful purposes. Safeguards has been traditionally based on verification of declared material and facilities using material accountancy as a fundamental measure. The strength of material accountancy is based on the fact that it allows to detect any diversion independent of the diversion route taken. Material accountancy detects a diversion after it actually happened and thus is powerless to physically prevent it and can only deter by the risk of early detection any contemplation by State authorities to carry out a diversion. Recently the IAEA has been faced with new challenges. To deal with these, various measures are being reconsidered to strengthen the safeguards system such as enhanced assessment of the completeness of the State's initial declaration of nuclear material and installations under its jurisdiction enhanced monitoring and analysis of open information and analysis of open information that may indicate inconsistencies with the State's safeguards obligations. Precise information vital for such enhanced assessments and analyses is normally not available or, if available, difficult and expensive collection of information would be necessary. Above all, realistic appraisal of truth needs sound human judgment.

  • PDF

The Effect of AD Noises Caused by AD Model Selection on Brand Awareness and Brand Attitudes (광고 모델 관련 광고 노이즈가 브랜드 인지도와 브랜드 태도에 미치는 영향)

  • Chung, Jai-Hak;Lee, Sang-Mi
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.3
    • /
    • pp.89-114
    • /
    • 2008
  • Most of the extant studies on communication effects have been devoted to the typical issue, "what types of communication activities are more effective for brand awareness or brand attitudes?" However, little research has addressed another question on communication decisions, "what makes communication activities less effective?" Our study focuses on factors negatively influenced on the efficiency of communication activities, especially of Advertising. Some studies have introduced concepts closely related to our topic such as consumer confusion, brand confusion, or belief confusion. Studies on product belief confusion have found some factors misleading consumers to misunderstand the physical features of products. Studies on brand confusion have uncovered factors making consumers confused on brand names. Studies on advertising confusion have tested the effects of ad models' employed by many other firms for different products on communication efficiency. We address a new concept, Ad noises, which are any factors interfering with consumers exposed to a particular advertisement in understanding messages provided by advertisements. The objective of this study is to understand the effects of ad noises caused by ad models on brand awareness and brand attitude. There are many different types of AD noises. Particularly, we study the effects of AD noises generated from ad model selection decision. Many companies want to employ celebrities as AD models while the number of celebrities who command a high degree of public and media attention are limited. Inevitably, several firms have been adopting the same celebrities as their AD models for different products. If the same AD model is adopted for TV commercials for different products, consumers exposed to those TV commercials are likely to fail to be aware of the target brand due to interference of TV commercials, for other products, employing the same AD model. This is an ad noise caused by employing ad models who have been exposed to consumers in other advertisements, which is the first type of ad noises studied in this research. Another type of AD noises is related to the decision of AD model replacement for the same product advertising. Firms sometimes launch another TV commercial for the same products. Some firms employ the same AD model for the new TV commercial for the same product and other firms employ new AD models for the new TV commercials for the same product. The typical problem with the replacement of AD models is the possibility of interfering with consumers in understanding messages of the TV commercial due to the dissimilarity of the old and new AD models. We studied the effects of these two types of ad noises, which are the typical factors influencing on the effect of communication: (1) ad noises caused by employing ad models who have been exposed to consumers in other advertisements and (2) ad noises caused by changing ad models with different images for same products. First, we measure the negative influence of AD noises on brand awareness and attitudes, in order to provide the importance of studying AD noises. Furthermore, our study unveiled the mediating conditions(variables) which can increase or decrease the effects of ad noises on brand awareness and attitudes. We study the effects of three mediating variables for ad noises caused by employing ad models who have been exposed to consumers in other advertisements: (1) the fit between product image and AD model image, (2) similarity between AD model images in multiple TV commercials employing the same AD model, and (3) similarity between products of which TV commercial employed the same AD model. We analyze the effects of another three mediating variables for ad noises caused by changing ad models with different images for same products: (1) the fit of old and new AD models for the same product, (2) similarity between AD model images in old and new TV commercials for the same product, and (3) concept similarity between old and new TV commercials for the same product. We summarized the empirical results from a field survey as follows. The employment of ad models who have been used in advertisements for other products has negative effects on both brand awareness and attitudes. our empirical study shows that it is possible to reduce the negative effects of ad models used for other products by choosing ad models whose images are relevant to the images of target products for the advertisement, by requiring ad models of images which are different from those of ad models in other advertisements, or by choosing ad models who have been shown in advertisements for other products which are not similar to the target product. The change of ad models for the same product advertisement can positively influence on brand awareness but positively on brand attitudes. Furthermore, the effects of ad model change can be weakened or strengthened depending on the relevancy of new ad models, the similarity of previous and current ad models, and the consistency of the previous and current ad messages.

  • PDF