• Title/Summary/Keyword: degree of elongation

Search Result 152, Processing Time 0.025 seconds

Effect of Synthetic Hydrotalcite on Salt Water Resistance of Chloroprene rubber Foam (Synthetic Hydrotalcite가 클로로프렌 고무 발포체의 내염수성에 미치는 영향 연구)

  • Park, Eun Young;Seo, Eun Ho;Lim, Sung Wook
    • Textile Coloration and Finishing
    • /
    • v.31 no.3
    • /
    • pp.177-186
    • /
    • 2019
  • In this study, we investigated for synthetic hydrotalcite in chloroprene rubber foam. Experiments were carried out to find the optimum content ratio by controlling the contents of MgO and Hydrotalcite. Swelling test in toluene immersion was made to measure the crosslinking density of CR foams, and the cure properties were investigated with flat die rheometer and Mooney viscosity. The difference of hardness, tensile strength and elongation at break were observed after immersing in 7% NaCl or 21% NaCl solutions for a day and four days. In addition, the volume change and water content remaining in CR foam were measured after immersing NaCl solution. As content of MgO increased, the value of the cure torque tended to increase, but it was almost constant above 2phr of MgO. However, the Mooney viscosity decreased with increasing MgO content. The crosslinking density, determined by the swelling ratio, showed that the CR compound without MgO showed a higher degree of swelling. When the content of hydrotalcite/MgO was 3:2, it was the lowest volume change of CR form. Also, As the content of hydrotalcite decreased, the difference of mechanical properties before and after immersion NaCl solution increased.

Properties of Activated Carbon Blacks Filled SBR Rubber Composites

  • Ao, Geyou;Hu, Quanli;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.9 no.2
    • /
    • pp.115-120
    • /
    • 2008
  • Rubber reinforcing carbon black N330 was treated by physical activation under $CO_2$ to different degrees of burn-off. The mechanical properties indicating the reinforcement of SBR (Styrene-Butadiene Rubber) vulcanizates filled by activated carbon blacks, such as tensile strength, modulus at 300% strain and elongation at break were determined. During $CO_2$ activation of fresh carbon blacks, the development of microporous structure caused an increase of extremely large specific surface area and the porosity turned out to be an increasing function of the degree of burn-off. The tensile strength and modulus at 300% of activated carbon blacks filled rubber composites were improved at lower loading ratios of 20 and 30 phr, but decreased drastically after 30 phr, which is considered that it might be difficult to get a fully dispersed rubber mixture at higher loading ratios for fillers having very large specific surface areas. However, the Electromagnetic Interference (EMI) shielding effectiveness of SBR rubber composites having activated carbon black at 74% yield were improved at a large extent when compared to those having raw carbon black and increased significantly as a function of increasing loading ratio.

Synthesis and Characterization of Artificial Skin based on Polypeptides (Polypeptide계 인공 피부의 합성과 특성)

  • Kim, Seon-Jeong;Min, Dong-Seon;Kim, Gye-Yong
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.87-92
    • /
    • 1987
  • In order to evaluate the artificial skin for burn would covering materials, copoly(N. carbobenzoxy-L-Iysine-L-leucine)s were prepared by Ipolymerization of N - carbobenzoxy-L- I sine anhydride and L-leucine anhydride in homogeneous solvents using triethylamine as an initiator. The synthetic polypeptides and the oxter type polyurethane(PV)of medical grade were used as the sheet type membranes were prepared ; monolayer membrances were composed of only the polypeptides, bilayer membranes and blend membranes were controlled by composition of the polypeptides and PU. Test of the swelling degree, mechanical tensile strength, elongation, oxygen permeability, water-vapor loss and In vitro degradation treated by pretense TV of samples of artificial skin were measured by adequate methods so as to mechanical, physincal characterization and biodegradation. As a result, all the values of samples were found to be similar to desired value of skin which was nature. The Artificial skin based on polypeptides can be considered as ideal burn wound covering materials.

  • PDF

Bisifusarium Delphinoides, an Emerging Opportunistic Pathogen in a Burn Patient with Diabetes Mellitus

  • Park, Ji-Hyun;Oh, Junsang;Song, Ji-Sun;Kim, Jayoung;Sung, Gi-Ho
    • Mycobiology
    • /
    • v.47 no.3
    • /
    • pp.340-345
    • /
    • 2019
  • An 82-year-old man with diabetes was admitted to the emergency department with a third-degree burn on his left leg. The deep swab specimen from his left leg was cultured on Sabouraud dextrose agar without cycloheximide and incubated at $25^{\circ}C$ for 5 days. On the basis of morphological characteristics and multigene phylogenetic analyses of the internal transcribed spacer region of ribosomal DNA and partial fragments of beta-tubulin and translation elongation factor 1-alpha, the causal agent of fungal skin infection was identified as Bisifusarium delphinoides, which was newly introduced by accommodating a Fusarium dimerum species complex. Thus, we describe here the first case of skin infection caused by B. delphinoides on a burn patient with diabetes mellitus based on morphological observation and molecular analysis.

Putative fructose-1,6-bisphosphate aldolase 1 (AtFBA1) affects stress tolerance in yeast and Arabidopsis

  • Moon, Seok-Jun;Shin, Dong-Jin;Kim, Beom-Gi;Byun, Myung-Ok
    • Journal of Plant Biotechnology
    • /
    • v.39 no.2
    • /
    • pp.106-113
    • /
    • 2012
  • Glycolysis is responsible for the conversion of glucose into pyruvate and for supplying reducing power and several metabolites. Fructose-1,6-bisphosphate aldolase (AtFBA1), a central enzyme in the glycolysis pathway, was isolated by functional complementation of the salt-sensitive phenotype of a calcineurin (CaN)-deficient yeast mutant. Under high salinity conditions, aldolase activity and the concentration of NADH were compromised. However, expression of AtFBA1 maintained aldolase activity and the NADH level in yeast cells. AtFBA1 shares a high degree of sequence identity with known class I type aldolases, and its expression was negatively regulated by stress conditions including NaCl. The fusion protein GFP-AtFBA1 was localized in the cytosol of Arabidopsis protoplasts. The seed germination and root elongation of AtFBA1 knock-out plants exhibited sensitivity to ABA and salt stress. These results indicate that AtFBA1 expression and aldolase activity is important for stress tolerance in yeast and plants.

Application of Cationic PVAm - Anionic PAM Dry Strength Aids System on a Kraft Paper Mill (양이온성 PVAm - 음이온성 PAM 건조지력증강제 시스템의 크라프트지 적용 사례)

  • Cho, Byoung-Uk;Ryu, Jeong-Yong;Son, Dong-Jin;Song, Bong-Keun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.3
    • /
    • pp.50-57
    • /
    • 2010
  • A mill trial was performed in a kraft paper mill in order to evaluate the possibility of utilizing dual polymer dry strength aids system consisting of cationic PVAm and anionic PAM. It was found that the cationic PVAm - anionic PAM dry strength additives can improve paper strength without significantly disturbing the stability of the kraft papermaking process when virgin UKP was used as a furnish. Tensile strength (25.3% in machine direction, 48.4% in cross machine direction), elongation of paper (31.6%, 15.6%) and tensile energy absorption (48%, 54%) were improved. Air permeability of the kraft paper was improved as well (22%). Tear strength was decreased with PVAm dry strength aids system, but it can be compensated with decreasing refining degree. In addition, the mill trial results indicate that highly air permeable kraft sack paper can be produced by the addition of PVAm dry strength agents at the stock with reduced freeness.

Application of Hyaluronic Acid Membrane Cross-linked with 1,3-Butadiene Diepoxide (1,3-Butadiene diepoxide로 가교된 히아루론산 막의 응용)

  • Cheong, Seong-Ihl;Han, Gwang-Seon;Bae, Jung-Eun;Kim, In-Seop
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.124-131
    • /
    • 2008
  • The biodegradable hyaluronic acid membranes cross-linked with lactide using the crosslinking agent, 1,3-butadiene diepoxide (BD), were prepared as a potential biocompatible material for tissue engineering. The degree of lactide and BD reaction of the crosslinked membrane was determined by the analysis of nuclear magnetic resonance spectroscopy 6% of growth inhibition was observed in case of high BD concentration but the value is low enough not to affect cell growth. As the crosslinking reaction temperature increased, elongation increased and swelling ratio decreased. The rate of degradation was found to increase with the crosslinking temperature. The drug release experiment showed that the transport of drug through the membrane decreased with the crosslinking temperature.

Thermal Properties of Poly(trimethylene terephthalate)/ Poly(ethylene terephthalate) Melt Blends

  • Son, Tae Won;Kim, Kwang Il;Kim, Nam Hun;Jeong, Min Gi;Kim, Young Hun
    • Fibers and Polymers
    • /
    • v.4 no.1
    • /
    • pp.20-26
    • /
    • 2003
  • The thermal behavior, morphology, ester-interchange reaction of Poly(trimethylene terephthalate) (PTT)/poly(ethylene terephthalate) (PET) melt blends were investigated over the whole composition range(xPTT/(1-x)PET) using a twinscrew Brabender. The melt blends were analyzed by differential scanning calorimetry (DSC), nuclear magnetic resonance spectroscopy ($^{13}{C-NMR}$), and scanning electron microscopy (SEM). Single glass transition temperature ($T_g$) and cold crystallization temperature ($T_cc$) were observed in all melt blends. Melt blends were found to be due to the ester-interchange reaction in PTT/PET blend. Also the randomness of copolymer increases because transesterification between PT and PET increases with increasing blending time This reaction increases homogeneity of the blends and decreases the degree of crystallinity of the melt blends. In PTT-rich blends, mechanical properties decrease with increase of PET content compared with that of pure PTT. And, in PET-rich blends, tensile modulus decreases with increase of PTT content, but tensile strength and elongation is similar to that of pure PET.

Effect of Microstructure on the Damping Capacity and Tensile Properties of Fe-Al-Mn Alloys (Fe-Al-Mn 합금의 진동감쇠능 및 인장성질에 미치는 미세조직의 영향)

  • Son, D.U.;Kim, J.H.;Lee, J.M.;Kim, I.S.;Kim, H.C.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.31-37
    • /
    • 2004
  • The damping capacity and strength of Fe-2Al-26Mn alloys have been studied for the development of new materials with high strength and damping capacity. Particularly, the effect of ${\alpha}'\;and\;{\varepsilon}$ martensite phase, which constitutes the microstructure of cold rolled Fe-Al-Mn alloys, has been investigated in terms of the strength and damping capacity of the alloys. The damping capacity rises with increasing the degree of cold rolling and reveals the maximum value at 25% reduction. The damping capacity is strongly affected by the volume fraction of ${\varepsilon}$ martensite, while the other phases, such as ${\alpha}'$ martensite and austenite phase, actually exhibit little effect on damping capacity. Considering that tensile strength increases and elongation decreases with increasing the volume fraction of ${\alpha}'$ martensite, it is proved that tensile strength is mainly affected by the amount of ${\alpha}'$ martensite.

  • PDF

Production Ecology of the Seagrass Zostera marina in Jindong Bay, Korea

  • Lee, Kun-Seop;Park, Jung-Im;Chung, Ik-Kyo;Kang, Dong-Woo;Huh, Sung-Hoi
    • ALGAE
    • /
    • v.19 no.1
    • /
    • pp.39-47
    • /
    • 2004
  • Production dynamics of eelgrass, Zostera marina was examined in Jindong Bay on the south of the Korea peninsula. Eelgrass leaf productivities and environmental factors such as underwater photon flux density, water temperature, and nutrient availabilities in the water column and sediments were monitored from March 2002 to December 2003. While water temperature exhibited a distinct seasonal trend, underwater irradiance and nutrient availabilities exhibited high degree of fluctuation, and did not show a seasonal trend throughout the experimental periods. Eelgrass leaf elongation and production rates showed significant seasonal variations. Leaf productivity was highest in May (30.0 mg dry wt sht$^{-1}$ d$^{-1}$ or 3.7g dry wt m$^{-2}$d$^{-1}$) and lowest in November (3.2 mg dry wt sht$^{-1}$ d$^{-1}$ or 0.12 g dry wt m $^{-2}$ d$^{-1}$). Eelgrass leaf productivities did not show a strong correlation with underwater irradiance or environmental nutrient availabilities. The production rates, however, were positively correlated with water temperature during spring periods, and were correlated negatively at high water temperature exceeded 20℃ during summer months. While relative growth rates were highest in spring and lowest in high water temperature periods, plastochrone interval was longest during summer and shortest during spring. These results imply that seasonal growth dynamics of eelgrass, Z. marina was mainly controlled by water temperature.