• 제목/요약/키워드: degree of clustering

검색결과 212건 처리시간 0.021초

Mechanical behavior of prefabricated steel-concrete composite beams considering the clustering degree of studs

  • Gao, Yanmei;Fan, Liang;Yang, Weipeng;Shi, Lu;Zhou, Dan;Wang, Ming
    • Steel and Composite Structures
    • /
    • 제45권3호
    • /
    • pp.425-436
    • /
    • 2022
  • The mechanical behaviors of the prefabricated steel-concrete composite beams are usually affected by the strength and the number of shear studs. Furthermore, the discrete degree of the arrangement for shear stud clusters, being defined as the clustering degree of shear stud λ in this paper, is an important factor for the mechanical properties of composite beams, even if the shear connection degree is unchanged. This paper uses an experimental and calculation method to investigate the influence of λ on the mechanical behavior of the composite beam. Five specimens (with different λ but having the same shear connection degree) of prefabricated composite beams are designed to study the ultimate supporting capacity, deformation, slip and shearing stiffness of composite beams. Experimental results are compared with the conventional slip calculation method (based on the influence of λ) of prefabricated composite beams. The results showed that the stiffness in the elastoplastic stage is reduced when λ is greater than 0.333, while the supporting capacity of beams has little affected by the change in λ. The slip distribution along the beam length tends to be zig-zagged due to the clustering of studs, and the slip difference increases with the increase of λ.

Improved Classification Algorithm using Extended Fuzzy Clustering and Maximum Likelihood Method

  • Jeon Young-Joon;Kim Jin-Il
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.447-450
    • /
    • 2004
  • This paper proposes remotely sensed image classification method by fuzzy c-means clustering algorithm using average intra-cluster distance. The average intra-cluster distance acquires an average of the vector set belong to each cluster and proportionates to its size and density. We perform classification according to pixel's membership grade by cluster center of fuzzy c-means clustering using the mean-values of training data about each class. Fuzzy c-means algorithm considered membership degree for inter-cluster of each class. And then, we validate degree of overlap between clusters. A pixel which has a high degree of overlap applies to the maximum likelihood classification method. Finally, we decide category by comparing with fuzzy membership degree and likelihood rate. The proposed method is applied to IKONOS remote sensing satellite image for the verifying test.

  • PDF

시계열 데이타 클러스터링에서 푸리에 진폭 기반의 프라이버시 보호 (Privacy-Preserving Clustering on Time-Series Data Using Fourier Magnitudes)

  • 김혜숙;문양세
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제35권6호
    • /
    • pp.481-494
    • /
    • 2008
  • 본 논문에서는 시계열 데이타 클러스터링에서 DFT 진폭 기반의 프라이버시 보호 기법을 제안한다. 기존의 프라이버시 보호 연구인 DFT 계수 기법은 원본과 유사한 데이타가 복원될 수 있어 프라이버시 보호 측면에서 큰 문제점이 있다. 반면에, 제안한 DFT 진폭 기법은 DFT 변환 후에 위상을 제외한 진폭만을 사용함으로써 원본 데이타를 복원하기 매우 어려운 특징을 가진다. 본 논문에서는 우선 기존의 DFT 계수 기법이 복원이 용이한 함수이고, 제안한 DFT 진폭 기법이 복원이 어려운 함수임을 체계적으로 설명한다. 다음으로, 클러스터링 정확도를 대신하고 진폭을 선택하기 위한 척도로서 거리-순서 보존정도의 개념을 제안한다. 거리-순서 보존 정도는 객체들의 상대적 순서가 클러스터링 보호 함수의 적용전후에 얼마나 보존되는지의 척도를 나타낸다. 본 논문에서는 이러한 거리-순서 보존 정도의 개념을 사용하여 DFT 진폭 기법에서 진폭을 선택하는 탐욕적 전략들을 제시한다. 즉, 제안한 탐욕적 전략은 거리-순서 보존 정도를 극대화하는 방향으로 DFT 진폭을 선택하여, 궁극적으로 클러스터링 정확도를 높이고자 하는 방법이다. 마지막으로 실험을 통해 제안한 거리-순서 보존 정도가 클러스터링 정확도를 대신할 수 있는 척도임을 보인다. 또한, 제안한 DFT 진폭 기법의 탐욕적 전략들이 기존의 DFT 계수 기법에 비해 정확도가 크게 떨어지지 않음을 확인한다. 이 같은 결과를 달 때, 제안한 DFT 진폭 기법은 DFT 계수 기법에 비해 프라이버시 보호 정도를 크게 개선했을 뿐 아니라 비교적 정확한 클러스터링 정확도를 보이는 우수한 연구 결과라 사료된다.

무선 애드 혹 네트워크상에서 라우팅 성능 향상을 위한 퍼지 적합도 기반 클러스터링 (Fuzzy Relevance-Based Clustering for Routing Performance Enhancement in Wireless Ad-Hoc Networks)

  • 이종득
    • 한국항행학회논문지
    • /
    • 제14권4호
    • /
    • pp.495-503
    • /
    • 2010
  • 클러스터링은 모바일 노드들에 대한 정보를 효율적으로 제공해 주며, 라우팅, 대역폭 할당과 같은 처리성능을 향상시키는 중요한 메카니즘이다. 본 논문에서 우리는 이동성(mobility)으로 인한 동적 속성, 평면구조 구조상에서 발생하는 노드 분산 등과 같은 문제를 효과적으로 해결하고 라우팅 성능을 향상시키기 위한 퍼지 적합도 기반의 클러스터링 기법을 제안한다. 제안된 기법은 FSV(Fuzzy_State_Viewing) 구조를 이용하여 퍼지 적합도${\alpha}$를 수행한다. 퍼지 적합도${\alpha}$는 FSV 구조에서 클러스터링을 수행하기 위한 클러스터헤드 CH(ClusterHead)를 선정하는 역할을 수행한다. 본 논문에서는 이와 같이 제안된 클러스터링 기법을 통해서 기존의 1-홉 클러스터 및 2-hop 클러스터에서 발생되는 문제를 해결하도록 하였다. 제안된 기법의 성능을 알아보기 위하여 우리는 NS-2 시뮬레이터를 이용하여 시뮬레이션을 수행하였다. 우리는 시뮬레이션 평가를 위해 기존의 Lowest-ID, MOBIC, SCA 기법 그리고 제안된 기법과의 성능을 비교하였다. 시뮬레이션 결과 제안된 기법의 성능이 Lowest-ID, MOBIC, SCA 기법에 비해서 우수함을 알 수 있다.

Fuzzy Technique-based Identification of Close and Distant Clusters in Clustering

  • Lee, Kyung-Mi;Lee, Keon-Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권3호
    • /
    • pp.165-170
    • /
    • 2011
  • Due to advances in hardware performance, user-friendly interfaces are becoming one of the major concerns in information systems. Linguistic conversation is a very natural way of human communications. Fuzzy techniques have been employed to liaison the discrepancy between the qualitative linguistic terms and quantitative computerized data. This paper deals with linguistic queries using clustering results on data sets, which are intended to retrieve the close clusters or distant clusters from the clustering results. In order to support such queries, a fuzzy technique-based method is proposed. The method introduces distance membership functions, namely, close and distant membership functions which transform the metric distance between two objects into the degree of closeness or farness, respectively. In order to measure the degree of closeness or farness between two clusters, both cluster closeness measure and cluster farness measure which incorporate distance membership function and cluster memberships are considered. For the flexibility of clustering, fuzzy clusters are assumed to be formed. This allows us to linguistically query close or distant clusters by constructing fuzzy relation based on the measures.

A Hybrid Recommendation System based on Fuzzy C-Means Clustering and Supervised Learning

  • Duan, Li;Wang, Weiping;Han, Baijing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권7호
    • /
    • pp.2399-2413
    • /
    • 2021
  • A recommendation system is an information filter tool, which uses the ratings and reviews of users to generate a personalized recommendation service for users. However, the cold-start problem of users and items is still a major research hotspot on service recommendations. To address this challenge, this paper proposes a high-efficient hybrid recommendation system based on Fuzzy C-Means (FCM) clustering and supervised learning models. The proposed recommendation method includes two aspects: on the one hand, FCM clustering technique has been applied to the item-based collaborative filtering framework to solve the cold start problem; on the other hand, the content information is integrated into the collaborative filtering. The algorithm constructs the user and item membership degree feature vector, and adopts the data representation form of the scoring matrix to the supervised learning algorithm, as well as by combining the subjective membership degree feature vector and the objective membership degree feature vector in a linear combination, the prediction accuracy is significantly improved on the public datasets with different sparsity. The efficiency of the proposed system is illustrated by conducting several experiments on MovieLens dataset.

A Simulation Study on The Behavior Analysis of The Degree of Membership in Fuzzy c-means Method

  • Okazaki, Takeo;Aibara, Ukyo;Setiyani, Lina
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권4호
    • /
    • pp.209-215
    • /
    • 2015
  • Fuzzy c-means method is typical soft clustering, and requires a degree of membership that indicates the degree of belonging to each cluster at the time of clustering. Parameter values greater than 1 and less than 2 have been used by convention. According to the proposed data-generation scheme and the simulation results, some behaviors in the degree of "fuzziness" was derived.

Mountain Clustering 기반 퍼지 RBF 뉴럴네트워크의 동정 (Identification of Fuzzy-Radial Basis Function Neural Network Based on Mountain Clustering)

  • 최정내;오성권;김현기
    • 한국정보전자통신기술학회논문지
    • /
    • 제1권3호
    • /
    • pp.69-76
    • /
    • 2008
  • 본 논문에서는 Mountain clustering 알고리즘을 이용한 Fuzzy Radial Basis Function Neural Network(FRBFNN)의 규칙 수를 자동생성 방법을 제시한다. FRBFNN은 기존 RBFNN에서 가우시안이나 타원형 형태의 특정 RBF를 사용하는 구조와 달리 클러스터의 중심값과의 거리에 기반을 둔 멤버쉽함수를 사용하여 전반부의 공간 분할 및 활성화 레벨을 결정한다. 또한 분할된 로컬영역에서의 입출력 특성을 나타내는 퍼지규칙의 후반부로서 고차 다항식을 고려하였다. 본 논문에서는 데이터의 밀집도에 기반을 두어 클러스터링을 수행하는 Mountain clustering 알고리즘을 사용하여 적합한 퍼지 규칙(클러스터)의 수와 클러스터의 중심값을 자동적으로 생성하는 방법을 제안한다. Mountain clustering으로부터 구해진 클러스터의 중심은 멤버쉽 값을 결정하는데 사용되며, Weighted Least Square Estimator (WLSE) 알고리즘을 사용하여 후반부 다항식의 계수를 추정한다. 제안된 알고리즘은 비선형 함수 모델링에 적용하여 성능의 우수성과 알고리즘의 타당성을 보인다.

  • PDF

Improvement on Fuzzy C-Means Using Principal Component Analysis

  • Choi, Hang-Suk;Cha, Kyung-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권2호
    • /
    • pp.301-309
    • /
    • 2006
  • In this paper, we show the improved fuzzy c-means clustering method. To improve, we use the double clustering as principal component analysis from objects which is located on common region of more than two clusters. In addition we use the degree of membership (probability) of fuzzy c-means which is the advantage. From simulation result, we find some improvement of accuracy in data of the probability 0.7 exterior and interior of overlapped area.

  • PDF

Clustering Analysis on Heart Rate Variation in Daytime Work

  • Hayashida, Yukuo;Kidou, Keiko;Mishima, Nobuo;Kitagawa, Keiko;Yoo, Jaesoo;Park, SunGyu;Oh, Yong-sun
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2017년도 춘계 종합학술대회 논문집
    • /
    • pp.257-258
    • /
    • 2017
  • Modern society tends to bring excessive labor to people and, therefore, further health management is required. In this paper, by using the clustering technique, one of machine learning methods, we try to bring out the measure of fatigue from heart rate (HR) variation during daytime work, helping people to get high-quality of healthy and calm life.

  • PDF