• Title/Summary/Keyword: degree of alignment

Search Result 194, Processing Time 0.021 seconds

Mono- and Multi-layer Langmuir-Blodgett Films of Maleimide Polymers Possessing Nonlinear Optical-Active Side Chains

  • Yoon Kuk Ro;Lee Hoosung;Rhee Bum Ku;Jung Changsoo
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.581-585
    • /
    • 2004
  • A copolymer P[OSA-MI] was synthesized by copolymerization of its corresponding monomers, N-phenyl maleimide (MI) and 2-octen-l-ylsuccinic anhydride (OSA). The polymer (poly[2-[1-(2,5-dioxo-l-phenylpyrroli­din-3-ylmethyl)heptyl]-succinic acid 4-(2-$\{$ethyl-[4-(4-nitrophen-ylazo)phenyl]amino$\}$ethyl)ester]) P[DR1MA-MI] was obtained from the reaction of P[OSA-MI] with 2-[4-(4-nitrophenylazo)-N-ethylphenylamino] ethanol (DR1). A stable monolayer of P[DRIMA-MI] was formed by spreading the solution of the polymer in chloroform. In Y-type Langmuir-Blodgett (LB) films prepared using this Langmuir-Blodgett method, the second harmonic waves generated from adjacent mono layers canceled each other out. In X-and Z-type LB films, the second harmonic intensity increased upon increasing the number of monolayers, but this increase was somewhat smaller than predicted by the square law. This phenomenon is due to defects or imperfect alignment of the dipoles in the LB film. The generation of second harmonic waves from Y-type LB films having an even number of mono layers supports this argument. The degree of imperfection seemed to increase as the number of layers increased. The second-order nonlinear optical properties of spin-cast films of these polymers were also measured. The largest second harmonic coefficient of the poled P[DRIMA-MI] film coated on a glass plate was 19 pm/V.

Molecular Characterization of a Transient Expression Gene Encoding for 1-Aminocyclopropane-1-carboxylate Synthase in Cotton (Gossypium hirsutum L.)

  • Wang, Xia;Zhang, Ying;Zhang, Jiedao;Cheng, Cheng;Guo, Xingqi
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.791-800
    • /
    • 2007
  • Ethylene performs an important function in plant growth and development. 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS), the key enzyme involved in ethylene biosynthesis, has been the focus of most ethylene studies. Here, a cotton ACS gene referred to as Gossypium hirsutum ACS1 (GhACS1), was isolated. The full-length cDNA of GhACS1 encodes for a 476-amino acid protein which harbors seven conserved regions, 11 invariant amino acid residues, and the PLP binding active site, all of which characterize ACC synthases. Alignment analysis showed that GhACS1 shared a high degree of identity with other known ACC synthases from different species. Two introns were detected in the genomic DNA sequence, and the results of Southern blot analysis suggested that there might be a multi-gene family encoding for ACC synthase in cotton. From the phylogenetic tree constructed with 24 different kinds of ACC synthases, we determined that GhACS1 falls into group II, and was closely associated with the wound-inducible ACS of citrus. The analysis of the 5' flanking region of GhACS1 revealed a group of putative cis-acting elements. The results of expression analysis showed that GhACS1 displayed its transient expression nature after wounding, abscisic acid (ABA), and $CuCl_2$ treatments. These results indicate that GhACS1, which was transiently expressed in response to certain stimuli, may be involved in the production of ethylene for the transmission of stress signals.

Titanium Mesh Cage for Anterior Stabilization in Tuberculous Spondylitis : Is It Safe?

  • Bak, Koang-Hum;Cheong, Jin-Hwan;Kim, Jae-Min;Kim, Choong-Hyun;Kim, Seung-Bum
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.6
    • /
    • pp.412-418
    • /
    • 2006
  • Objective : The safety of titanium metal cages in tuberculous spondylitis has not been investigated. We evaluated the outcome and complications of titanium mesh cages for reconstruction after thoracolumbar vertebrectomy in the tuberculous spondylitis. Methods : There were 17 patients with 18 operations on the tuberculous spondylitis in this study. Sixteen patients were operated with anterior corpectomy and reconstruction with titanium mesh cage followed by posterior transpedicular screw fixations on same day, two pateints were operated by either anterior or posterior approach only. After the affected vertebral body resection and pus drainage from the psoas muscle, titanium mesh cage, filled with morselized autogenous bone, was inserted. All the patients had antituberculosis medication for 18 months. The degree of kyphosis correction and the subsidence of cage were measured in the 15 patients available at a minimum of 2 years. Outcome was assessed with various cross-sectional outcome measures. Recurrent infection was identified by serial ESR[Erythrocyte Sedimentation Rate] and CRP[Cross Reactive Protein]. Results : There was no complication from the use of a titanium mesh cage. Recurrent infection was not detected in any case. Average preoperative of $9.2^{\circ}$ was reduced to $-2^{\circ}$ at immediate postoperative period, and on final follow up period kyphotic angle was measured to be $4.5^{\circ}$. Postoperatively, subsidence was detected in most patients especially at ambulation period, however further subsidence was prevented by the titanium mesh cage. Osseous union was identified in all cases at the final follow-up. Conclusion : The cylindrical mesh cage is a successful instrument in restoring and maintaining sagittal plane alignment without infection recurrence after vertebrectomy for tuberculous spondylitis.

High-quality ZnO nanowire arrays directly synthesized from Zn vapor deposition without catalyst

  • Khai, Tran Van;Prachuporn, Maneeratanasarn;Choi, Bong-Geun;Kim, Hyoun-Woo;So, Dae-Sup;Lee, Joon-Woo;Park, No-Hyung;Huh, Hoon;Tung, Ngo Trinh;Ham, Heon;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.4
    • /
    • pp.137-146
    • /
    • 2011
  • Vertically well-aligned ZnO nanowire (NW) arrays were synthesized directly on GaN/sapphire and Si substrate from Zn vapor deposition without catalysts. Experimental results showed that the number density, diameter, crystallinity and degree of the alignment of ZnO NWs depended strongly on both the substrate position and kind of the substrates used for the growth. The photoluminescence (PL) characteristics of the grown ZnO NW arrays exhibit a strong and sharp ultraviolet (UV) emission at 379 nm and a broad weak emission in the visible range, indicating that the obtained ZnO NWs have a high crystal quality with excellent optical properties. The as-grown ZnO NWs were characterized by using scanning electron microscopy (SEM), high resolution transmission electronic microscopy (HR-TEM), and X-ray diffraction (XRD).

Polyvilylidenefluoride-based Nanocomposite Films Induced-by Exfoliated Boron Nitride Nanosheets with Controlled Orientation

  • Cho, Hong-Baek;Nakayama, Tadachika;Jeong, DaeYong;Tanaka, Satoshi;Suematsu, Hisayuki;Niihara, Koichi;Choa, Yong-Ho
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.270-276
    • /
    • 2015
  • Polyvinylidene fluoride (PVDF)-based nanocomposites are fabricated by incorporation of boron nitride (BN) nanosheets with anisotropic orientation for a potential high thermal conducting ferroelectric materials. The PVDF is dissolved in dimethylformamide (DMF) and homogeneously mixed with exfoliated BN nanosheets, which is then cast into a polyimide film under application of high magnetic fields (0.45~10 T), where the direction of the filler alignment was controlled. The BN nanosheets are exfoliated by a mixed way of solvothermal method and ultrasonication prior to incorporation into the PVDF-based polymer suspension. X-ray diffraction, scanning electron microscope and thermal diffusivity are measured for the characterization of the polymer nanocomposites. Analysis shows that BN nanosheets are exfoliated into the fewer layers, whose basal planes are oriented either perpendicular or parallel to the composite surfaces without necessitating the surface modification induced by high magnetic fields. Moreover, the nanocomposites show a dramatic thermal diffusivity enhancement of 1056% by BN nanosheets with perpendicular orientation in comparison with the pristine PVDF at 10 vol % of BN, which relies on the degree of filler orientation. The mechanism for the magnetic field-induced orientation of BN and enhancement of thermal property of PVDF-based composites by the BN assembly are elucidated.

A Novel MAP Kinase Gene in Cotton (Gossypium hirsutum L.), GhMAPK, is Involved in Response to Diverse Environmental Stresses

  • Wang, Meimei;Zhang, Ying;Wang, Jian;Wu, Xiaoliang;Guo, Xingqi
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.325-332
    • /
    • 2007
  • The mitogen-activated protein kinase (MAPK) cascade is one of the major and evolutionally conserved signaling pathways and plays pivotal role in the regulation of stress and developmental signals in plants. Here, a novel gene, termed Gossypium hirsutum MAPK (GhMAPK), was isolated from cotton. The full-length cDNA of GhMAPK encodes for a 372 amino acid protein that contains all 11 of the MAPK conserved subdomains and the phosphorylationactivation motif, TEY. Amino acid sequence alignment revealed that GhMAPK shared high identity with group-C MAPK in plants and showed 83~89% similarities with MAPKs from Arabidopsis, apricot, pea, petunia, and tobacco. Southern blot analysis indicated that the GhMAPK belonged to a multygene family in cotton. Two introns were found within the region of genomic sequence. Northern blot analysis revealed that the transcripts of GhMAPK accumulated markedly when the cotton seedlings were subjected to various abiotic stimuli such as wounding, cold (4$^{\circ}C$), or salinity stress; Furthermore, GhMAPK was upregulated by the exogenous signaling molecules, such as salicylic acid (SA) and hydrogen peroxide ($H_2O_2C$), as well as pathogen attacks. These results indicate that the GhMAPK, which has a high degree of identity with group-C plant MAPKs, may also play an important role in response to environmental stresses.

Autotransplantation of an impacted maxillary canine using Rapid Prototyping : A case report (Rapid Prototyping을 이용한 상악 매복 견치의 자가이식 치험례)

  • Cho, Nan-Ju;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.3
    • /
    • pp.498-505
    • /
    • 2007
  • Management options for impacted maxillary canines can include (1) continued observation, (2) extraction of the primary canine to aid spontaneous eruption, (3) uncovering and bonding of the impacted tooth and its eruption using orthodontic traction, (4) autotransplantation, and (5) extraction followed by prosthetic replacement. Autotransplantation should be considered when the degree of malposition is too severe to correct by orthodontic alignment. The present report describes the management of an ectopic eruption of the left maxillary canine in an 10-year-old girl. The treatment included the extraction of primary maxillary left canine and the autotransplantation using a Rapid Prototyping model. By using RP model to contour the recipient bone and check for fitting in the prepared socket, the extra-oral time can reduce. The autotransplanted canine showed mobility within normal limit, negative response to percussion and positive to electric pulp test after 6 months.

  • PDF

Determination of Femoral and Tibial Joint Reference Angles in Small-breed Dogs

  • Kim, Jooho;Heo, Suyoung;Na, Jiyoung;Kim, Namsoo;Kim, Minsu;Jeong, Seongmok;Lee, HaeBeom
    • Journal of Veterinary Clinics
    • /
    • v.33 no.6
    • /
    • pp.340-345
    • /
    • 2016
  • The present study determined the normal reference ranges for the femoral and tibial joint orientation angles of small-breed dogs. For this purpose, 60 each of cadaveric canine femurs and tibias from normal small-breed dogs (Maltese, Poodle, Shih Tzu, Yorkshire Terrier) were examined with radiographs and photographs. Axial and frontal radiographs and photographs of each bone were obtained, from which anteversion and inclination angles, anatomic lateral proximal and distal femoral angles (aLPFA and aLDFA), mechanical lateral proximal and distal femoral angles (mLPFA and mLDFA), and mechanical medial proximal and distal tibial angles (mMPTA and mMDTA) were measured. The 95% CI for radiographic values of all femurs and tibiae were anteversion angle, $23.4-27.4^{\circ}$; inclination angle, $128.4-130.4^{\circ}$; aLPFA, $117.8-122.1^{\circ}$; aLDFA, $93.7-95.2^{\circ}$; mLPFA $113.8-117.3^{\circ}$; mLDFA $99.2-100.5^{\circ}$; mMPTA $96.8-98.5^{\circ}$; mMDTA $89.4-90.7^{\circ}$. The Maltese had a larger anteversion angle than the Poodle and the Yorkshire Terrier and a larger mLPFA than the Poodle. In the comparison between the radiographs and the photographs, significant differences were found in the anteversion angle, mLPFA, mMPTA, and mMDTA. The established normal reference values might be useful for determining whether a valgus or varus deformity of the femur or the tibia is present and if so, the degree of angular correction needed.

Improvement of Magnetic Properties of Nd-Fe-B Type Sintered Magnet (Nd-Fe-B계 소결자석의 자기적특성 향상 연구)

  • Kim, Yoon-B.;Jung, W.S.;Jeung, W.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.2
    • /
    • pp.57-63
    • /
    • 2002
  • In order to increase the magnetic properties of a Nd-Fe-B sintered magnet, the general factors including particle size and its distribution, volume fraction of Nd$_2$Fe$_{14}$B phase, degree of alignment of Nd$_2$Fe$_{14}$B grain, oxygen content and grain size etc. should be optimized by controlling the composition of Nd-Fe-B alloy as well as the manufacturing process. In this study, fabrication of the Nd-Fe-B sintered magnet was carried out in a laboratory scale by controlling the composition of Nd-Fe-B alloy and the manufacturing process. The optimum milling condition was found by investigating the milling media, milling time and ball size. The addition of FeGa was effective to increase the coercivity of the Nd-Fe-B sintered magnet. A remanence of 14.4 kG, a coercivity of 9.4 kOe and a maximum energy product of 47 MGOe were obtained from the sintered magnet.

Thermopower Wave in Core-Shell Structures of Carbon Nanotube Chemical Fuels (나노튜브/화학연료의 동축 구조에서 생성되는 열동력 파도를 이용한 전기 에너지 생성)

  • Choi, Wonjoon;Strano, Michael S.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.615-620
    • /
    • 2013
  • There is considerable interest in developing energy sources capable of larger power densities. In our previous works, we proved that by coupling an exothermic chemical reaction with 1D nanostructures, a self-propagating reactive wave can be driven along its length with a concomitant electrical pulse of high specific power, which we identified as a thermopower wave. Herein, we discuss details about many different aspects of a thermopower wave. Different alignment degree in vertically aligned CNT films is evaluated in the reactive wave speed and correlated with its thermal reaction that affects the change in the magnitude of energy generation. The effects of the temperature-dependent properties of chemical fuels and CNTs are evaluated. Furthermore, we explore the convection and radiation portions in this thermal wave as well as the synchronization between the thermal reaction transfer and the oscillation of the electrical signal.